In this series of exercises we will classify all groups of order $2p$, where p is an odd prime.

1. Assume G is a group of order $2p$, where p is an odd prime. If $a \in G$, show that a must have order 1, 2, p, or $2p$.

 \textit{Proof.} Let $a \in G$. By Lagrange, the order of a divides the order of the group. Therefore $|a| | 2p$. Since the divisors of $2p$ are 1, 2, p, and $2p$, then a must have order 1, 2, p, or $2p$. \hfill \square

2. Suppose that G has an element of order $2p$. Prove that G isomorphic to \mathbb{Z}_{2p}.

 \textit{Proof.} If a has order $2p$, then $G = \langle a \rangle$. Therefore G is cyclic of order $2p$ so it is isomorphic to \mathbb{Z}_{2p}. \hfill \square

\textbf{From now on, suppose G is not cyclic:}

 \textit{Proof.} Let 1 be the identity of G. Since G is not cyclic and G has no element of order p, if $a \in G$ and a is not the identity, then the order of a is 2. But this is true for all non-identity elements of G. This implies that G is abelian (we proved this in a homework exercise from Chapter 3). Since $|G| = 2p$ and p is an odd prime, then $|G| \geq 6$. So it must have at least 5 non-identity elements. Let a and b be two distinct non-identity elements of G. Then a and b have order 2. Now $ab \in G$. $ab \neq a$ because $(ab = a) \rightarrow (b = 1)$ by the left-cancellation law. $ab \neq b$ because $(ab = b) \rightarrow (a = 1)$ by the right-cancellation law. We know $a^2 = 1$, therefore if $ab = 1$, then $ab = a^2$ so $b = a$ by the left-cancellation law. Since $b \neq a$, then $ab \neq 1$. Therefore 1, a, b, ab are all distinct elements. Consider the set $\{1, a, b, ab\}$. Note that $a \cdot b = ab \in G$, $a \cdot (ab) = a^2b = b \in G$ and $b \cdot (ab) = b(ab) = b(ba) = b^2a = a \in G$. For the last one we used that G is abelian. So the operation is closed in $\{1, a, b, ab\}$, every element has inverses (the inverse of each element is itself) and it contains the identity. Therefore $\{1, a, b, ab\}$ is a subgroup of G. But then by Lagrange, that means that $4|(2p)$, so $2|p$, so p is even. But p is odd. Therefore we’ve reached a contradiction. Hence, there must be an element of order > 2. Since G is not cyclic and it doesn’t have elements of order $2p$, there must be an element of order p. \hfill \square

4. Let z be an element of order p. Let $P = \langle z \rangle$. Show that if $g \notin P$, then g has order 2.
5. Let \(P \in G \) such that \(g \notin P \). Since \(|P| = p\), then there are two cosets of \(P \) in \(G \). Since \(g \notin P \), then \(gP \neq P \), therefore one coset is \(P \) and the other is \(gP \). We know \(P \cup gP = G \). So we have:

\[
P = \{1, z, z^2, z^3, \ldots, z^{p-1}\},
\]
\[
gP = \{g, gz, gz^2, gz^3, \ldots, gz^{p-1}\}.
\]

Now, \(P \) has index 2 in \(G \), therefore if \(a \notin P \) and \(b \notin P \), then \(ab \in P \). Hence if \(a \notin P \), then \(a^2 \in P \). Since \(g \) is not the identity and \(G \) is not cyclic, then the order of \(g \) is either 2 or \(p \). For the sake of contradiction suppose the order is not 2. Then the order of \(g \) is \(p \). We know \(g^2 \in P \) so there exists an integer \(k \) such that \(g^2 = z^k \). But \(g^2 \neq 1 \) (since we’re assuming that \(g \) does not have order 2) so \(1 \leq k \leq p - 1 \). But \(\langle z^k \rangle = \langle z \rangle \) for any \(1 \leq k \leq p - 1 \) because \(k \) is relatively prime to \(p \). Therefore \(\langle g^2 \rangle = P \). But because \(p \) is odd and \(g^2 \neq 1 \), then \(\langle g^2 \rangle = \langle g \rangle \). Therefore if \(g \) has order \(p \), then \(g \) must be an element of \(P \). But \(g \) is not an element of \(P \). Therefore \(g \) has order 2.

\[\Box\]

6. Let \(P \) be a subgroup of \(G \) with order \(p \) and \(y \in G \) have order 2. Show that \(yP = Py \).

Proof. Since the \([G : P] = 2\), then by exercise 18 in chapter 6 (from Homework 5), \(yP = Py \). The key of the proof is that if \(y \in P \), then \(yP = P = Py \) and if \(y \notin P \) then \(yP \neq P \) so it is the second coset. Similarly \(Py \neq P \) so \(Py \) is the second coset. So \(Py = yP \).

\[\Box\]

From now on, let \(z \in G \) be an element of order \(p \) and \(y \in G \) be an element of order 2.

7. Let \(P = \langle z \rangle \) is a subgroup of order \(p \) generated by \(z \). If \(y \) is an element of order 2, then \(yz = z^{p-1}y = z^{-1}y \).

Proof. First, let’s note that \(y \notin P \). Indeed every non-identity element in \(P \) has order \(p \) and the identity has order 1. Therefore \(y \notin P \). Now, since \(yP = Py \) and \(yz \in yP \), then \(yz \in Py \), therefore there exists an integer \(k \) such that \(yz = z^k y \) and \(1 \leq k \leq p \) (because an element of \(P \) is an element of the form \(z^k \) with \(1 \leq k \leq p \)). Suppose \(k = p \), then \(yz = z^py = y \). Therefore \(z = 1 \), but \(z \) has order \(p \), so it is not 1. Therefore \(k \neq p \). Therefore \(1 \leq k < p \).

To finish, we need only show that \(k \neq 1 \). Suppose \(k = 1 \), then \(yz = zy \). Since \(yz \notin P \), then \(yz \) has order 2, then \((yz)^2 = 1 \). But

\[
(yz)^2 = (zy)(yz) = zy^2z = z^2.
\]

So \(z^2 = 1 \), but that contradicts that \(z \) has order \(p \). Therefore \(yz \neq zy \), so \(k \neq 1 \).

A similar idea will prove that \(k = p - 1 \). Suppose \(yz = z^{k}y \). We know \((yz)^2 = 1 \) on the one hand but

\[
(yz)^2 = (z^k y)(yz) = z^k(y^2)z = z^{k+1}.
\]

Therefore \(z^{k+1} = 1 \). But \(z \) has order \(p \), therefore \(k + 1 \equiv 0 \mod p \). Since \(1 < k \geq p - 1 \), then \(k = p - 1 \).

\[\Box\]

8. Show that we can list the elements of \(G \) as \(\{y^iz^j \mid 0 \leq i \leq 1, 0 \leq j \leq p - 1\} \).

\[\Box\]
Proof. Let \(x \in G \). Then either \(x \in P \) or \(x \in yP \). If \(x \in P \), then \(x = z^k = y^0 z^k \) for some integer \(k \) such that \(0 \leq k \leq p - 1 \). If \(x \in yP \), then \(x = yz^k = y^1 z^k \) for some integer \(k \) such that \(0 \leq k \leq p - 1 \). But that is exactly what we want to prove.

\[\square \]

9. Prove that \(G \) is isomorphic to the dihedral group \(D_p \).

Proof. We know \(G = \{1, z, z^2, z^3, \ldots, z^{p-1}, y, yz, yz^2, \ldots, yz^{p-1}\} \). We know that \(z^p = 1 \) and that \(y^2 = 1 \). We also know that \(yz = z^{-1}y \). Now \(D_p = \{1, r, r^2, \ldots, r^{p-1}, s, sr, sr^2, \ldots, s r^{p-1}\} \) satisfying that \(r^p = 1, s^2 = 1 \) and \(sr = r^{-1}s \). \(G \) and \(D_p \) look identical (and satisfy the same equations) if one changes the variable \(z \rightarrow r \) and \(y \rightarrow s \). \(y \) is the reflection and \(z \) is the rotation in other words. The three important equations of the dihedral group are satisfied and the elements of each set clearly match one to one. Therefore \(G \cong D_p \).

\[\square \]