Enrique Treviño

Swarthmore College
March 1st, 2011
In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

- $4 + 7 = 11$
- $4 + 8 = 12$
- $4 + 9 = 1$
- $4 + 9 \equiv 1 \pmod{12}$
- $a \equiv b \pmod{n}$
Modular Arithmetic

In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

- $4 + 7 = 11$
- $4 + 8 = 12$
- $4 + 9 = 1$
- $4 + 9 \equiv 1 \pmod{12}$
- $a \equiv b \pmod{n}$
The least quadratic non-residue
The least inert prime in a real quadratic field
Dirichlet Characters

Modular Arithmetic

In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

- $4 + 7 = 11$
- $4 + 8 = 12$
- $4 + 9 = 1$

- $4 + 9 \equiv 1 \pmod{12}$
- $a \equiv b \pmod{n}$
Modular Arithmetic

In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

- $4 + 7 = 11$
- $4 + 8 = 12$
- $4 + 9 = 1$

- $4 + 9 \equiv 1 \pmod{12}$
- $a \equiv b \pmod{n}$
In 7 hours it will be 11:30 pm, in 8 hours it will be 12:30 am, but in 9 it will be 1:30 am.

- $4 + 7 = 11$
- $4 + 8 = 12$
- $4 + 9 = 1$

- $4 + 9 \equiv 1 \pmod{12}$
- $a \equiv b \pmod{n}$
Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365 = 48180$ days.
- $132/4 = 33$ “leap years”, hence 33 more days.
- 1900 was not a “leap year” hence -1 day.
- 14 – 1 days between March 14 and March 1, so -13 days.
- Total Days Ago:
 \[48180 + 33 – 1 – 13 = 48199 \equiv 4 \pmod{7}.\]
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132 + 33 – 1 – 13 \equiv 1 \times 6 + 19 = 25 \equiv 4 \pmod{7}.$
The least quadratic non-residue
The least inert prime in a real quadratic field
Dirichlet Characters

Einstein’s Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365 = 48180$ days.
- $132/4 = 33$ “leap years”, hence 33 more days.
- 1900 was not a “leap year” hence $–1$ day.
- 14 – 1 days between March 14 and March 1, so $–13$ days.
- Total Days Ago:
 $48180 + 33 – 1 – 13 = 48199 \equiv 4 \pmod{7}$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132 + 33 – 1 – 13 \equiv 1 \times 6 + 19 = 25 \equiv 4 \pmod{7}$.
Einstein’s Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365 = 48180$ days.
- $132/4 = 33$ “leap years”, hence 33 more days.
- 1900 was not a “leap year” hence -1 day.
- 14 – 1 days between March 14 and March 1, so -13 days.
- Total Days Ago:
 $48180 + 33 - 1 - 13 = 48199 \equiv 4 \pmod{7}$.
- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132 + 33 - 1 - 13 \equiv 1 \times 6 + 19 = 25 \equiv 4 \pmod{7}$.
Albert Einstein was born on March 14, 1879.

1. 132 years ago, hence $132 \times 365 = 48180$ days.
2. $132/4 = 33$ “leap years”, hence 33 more days.
3. 1900 was not a “leap year” hence -1 day.
4. 14 – 1 days between March 14 and March 1, so -13 days.
5. Total Days Ago:

 $48180 + 33 - 1 - 13 = 48199 \equiv 4 \pmod{7}$.

Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.

$365 \times 132 + 33 - 1 - 13 \equiv 1 \times 6 + 19 = 25 \equiv 4 \pmod{7}$.
Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365 = 48180$ days.
- $132/4 = 33$ “leap years”, hence 33 more days.
- 1900 was not a “leap year” hence -1 day.
- 14 – 1 days between March 14 and March 1, so -13 days.

Total Days Ago:
$48180 + 33 - 1 - 13 = 48199 \equiv 4 \pmod{7}$.

Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.

$365 \times 132 + 33 - 1 - 13 \equiv 1 \times 6 + 19 = 25 \equiv 4 \pmod{7}$.
Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365 = 48180$ days.
- $132/4 = 33$ “leap years”, hence 33 more days.
- 1900 was not a “leap year” hence -1 day.
- 14 – 1 days between March 14 and March 1, so -13 days.
- **Total Days Ago:**

 $$48180 + 33 - 1 - 13 = 48199 \equiv 4 \pmod{7}.$$

- Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.
- $365 \times 132 + 33 - 1 - 13 \equiv 1 \times 6 + 19 = 25 \equiv 4 \pmod{7}.$
Einstein’s Birthday

Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365 = 48180$ days.
- $132/4 = 33$ “leap years”, hence 33 more days.
- 1900 was not a “leap year” hence -1 day.
- 14 – 1 days between March 14 and March 1, so -13 days.

Total Days Ago:

$$48180 + 33 - 1 - 13 = 48199 \equiv 4 \pmod{7}.$$

Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.

$$365 \times 132 + 33 - 1 - 13 \equiv 1 \times 6 + 19 = 25 \equiv 4 \pmod{7}.$$

Enrique Treviño
Albert Einstein was born on March 14, 1879.

- 132 years ago, hence $132 \times 365 = 48180$ days.
- $132/4 = 33$ “leap years”, hence 33 more days.
- 1900 was not a “leap year” hence −1 day.
- 14 − 1 days between March 14 and March 1, so −13 days.

Total Days Ago:

$$48180 + 33 - 1 - 13 = 48199 \equiv 4 \pmod{7}.$$

Since today is Tuesday, four days ago it was Friday, so Einstein was born on a Friday.

$$365 \times 132 + 33 - 1 - 13 \equiv 1 \times 6 + 19 = 25 \equiv 4 \pmod{7}.$$
Consider the sequence

\[2, 5, 8, 11, \ldots \]

Can it contain any squares?

- Every positive integer \(n \) falls in one of three categories: \(n \equiv 0, 1 \) or \(2 \) (mod 3).
- If \(n \equiv 0 \) (mod 3), then \(n^2 \equiv 0^2 = 0 \) (mod 3).
- If \(n \equiv 1 \) (mod 3), then \(n^2 \equiv 1^2 = 1 \) (mod 3).
- If \(n \equiv 2 \) (mod 3), then \(n^2 \equiv 2^2 = 4 \equiv 1 \) (mod 3).
Squares

Consider the sequence

\[2, 5, 8, 11, \ldots \]

Can it contain any squares?

- Every positive integer \(n \) falls in one of three categories: \(n \equiv 0, 1 \text{ or } 2 \pmod{3} \).
 - If \(n \equiv 0 \pmod{3} \), then \(n^2 \equiv 0^2 = 0 \pmod{3} \).
 - If \(n \equiv 1 \pmod{3} \), then \(n^2 \equiv 1^2 = 1 \pmod{3} \).
 - If \(n \equiv 2 \pmod{3} \), then \(n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3} \).
Consider the sequence

\[2, 5, 8, 11, \ldots \]

Can it contain any squares?

- Every positive integer \(n \) falls in one of three categories:
 \[n \equiv 0, 1 \text{ or } 2 \pmod{3} \].
- If \(n \equiv 0 \pmod{3} \), then \(n^2 \equiv 0^2 = 0 \pmod{3} \).
- If \(n \equiv 1 \pmod{3} \), then \(n^2 \equiv 1^2 = 1 \pmod{3} \).
- If \(n \equiv 2 \pmod{3} \), then \(n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3} \).
Consider the sequence

\[2, 5, 8, 11, \ldots \]

Can it contain any squares?

- Every positive integer \(n \) falls in one of three categories:
 \(n \equiv 0, 1 \text{ or } 2 \) (mod 3).
- If \(n \equiv 0 \) (mod 3), then \(n^2 \equiv 0^2 = 0 \) (mod 3).
- If \(n \equiv 1 \) (mod 3), then \(n^2 \equiv 1^2 = 1 \) (mod 3).
- If \(n \equiv 2 \) (mod 3), then \(n^2 \equiv 2^2 = 4 \equiv 1 \) (mod 3).
Consider the sequence

\[2, 5, 8, 11, \ldots \]

Can it contain any squares?

- Every positive integer \(n \) falls in one of three categories: \(n \equiv 0, 1 \text{ or } 2 \pmod{3} \).
 - If \(n \equiv 0 \pmod{3} \), then \(n^2 \equiv 0^2 = 0 \pmod{3} \).
 - If \(n \equiv 1 \pmod{3} \), then \(n^2 \equiv 1^2 = 1 \pmod{3} \).
 - If \(n \equiv 2 \pmod{3} \), then \(n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3} \).
Let n be a positive integer. For $q \in \{0, 1, 2, \ldots, n - 1\}$, we call q a square mod n if there exists an integer x such that $x^2 \equiv q \pmod{n}$. Otherwise we call q a non-square.

- For $n = 3$, the squares are $\{0, 1\}$ and the non-square is 2.
- For $n = 5$, the squares are $\{0, 1, 4\}$ and the non-squares are $\{2, 3\}$.
- For $n = 7$, the squares are $\{0, 1, 2, 4\}$ and the non-squares are $\{3, 5, 6\}$.
- For $n = p$, an odd prime, there are $\frac{p+1}{2}$ squares and $\frac{p-1}{2}$ non-squares.
Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore $p \equiv \pm 1 \pmod{8}$, hence $p = 7$ is the first example.

- For the least non-square to be > 3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1 \pmod{8}$ and $p \equiv \pm 1 \pmod{12}$, therefore $p \equiv \pm 1 \pmod{24}$, giving us $p = 23$ as the first example.

- For the least non-square to be > 5 we need 2, 3 and 5 to be squares, therefore $p \equiv \pm 1 \pmod{8}$, $p \equiv \pm 1 \pmod{12}$ and $p \equiv \pm 1 \pmod{5}$, therefore $p \equiv \pm 1, \pm 49 \pmod{120}$, giving us $p = 71$ as the first example.
Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore $p \equiv \pm 1 \pmod{8}$, hence $p = 7$ is the first example.

- For the least non-square to be > 3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1 \pmod{8}$ and $p \equiv \pm 1 \pmod{12}$, therefore $p \equiv \pm 1 \pmod{24}$, giving us $p = 23$ as the first example.

- For the least non-square to be > 5 we need 2, 3 and 5 to be squares, therefore $p \equiv \pm 1 \pmod{8}$, $p \equiv \pm 1 \pmod{12}$ and $p \equiv \pm 1 \pmod{5}$, therefore $p \equiv \pm 1, \pm 49 \pmod{120}$, giving us $p = 71$ as the first example.
Least non-square

How big can the least non-square be?

- For the least non-square to be >2 we need 2 to be a square, therefore $p \equiv \pm 1 \pmod{8}$, hence $p = 7$ is the first example.

- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1 \pmod{8}$ and $p \equiv \pm 1 \pmod{12}$, therefore $p \equiv \pm 1 \pmod{24}$, giving us $p = 23$ as the first example.

- For the least non-square to be >5 we need 2, 3, and 5 to be squares, therefore $p \equiv \pm 1 \pmod{8}$, $p \equiv \pm 1 \pmod{12}$ and $p \equiv \pm 1 \pmod{5}$, therefore $p \equiv \pm 1, \pm 49 \pmod{120}$, giving us $p = 71$ as the first example.
Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore $p \equiv \pm 1 \pmod{8}$, hence $p = 7$ is the first example.

- For the least non-square to be > 3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1 \pmod{8}$ and $p \equiv \pm 1 \pmod{12}$, therefore $p \equiv \pm 1 \pmod{24}$, giving us $p = 23$ as the first example.

- For the least non-square to be > 5 we need 2, 3 and 5 to be squares, therefore $p \equiv \pm 1 \pmod{8}$, $p \equiv \pm 1 \pmod{12}$ and $p \equiv \pm 1 \pmod{5}$, therefore $p \equiv \pm 1, \pm 49 \pmod{120}$, giving us $p = 71$ as the first example.
Let $g(p)$ be the least non-square mod p. Let p_i be the i-th prime, i.e., $p_1 = 2, p_2 = 3, \ldots$

- $\# \{p \leq x \mid g(p) = 2\} \approx \frac{x}{2}$.
- $\# \{p \leq x \mid g(p) = 3\} \approx \frac{x}{4}$.
- $\# \{p \leq x \mid g(p) = p_k\} \approx \frac{x}{2^k}$.
- If $k = \log x / \log 2$ you would expect only one prime satisfying $g(p) = p_k$, so if k is a bit bigger, then you wouldn’t expect a prime with such a “large” least non-square.
- Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.
Heuristics

Let $g(p)$ be the least non-square mod p. Let p_i be the i-th prime, i.e, $p_1 = 2, p_2 = 3, \ldots$

1. $\{p \leq x \mid g(p) = 2\} \approx \frac{x}{2}$.
2. $\{p \leq x \mid g(p) = 3\} \approx \frac{x}{4}$.
3. $\{p \leq x \mid g(p) = p_k\} \approx \frac{x}{2^k}$.
4. If $k = \log x / \log 2$ you would expect only one prime satisfying $g(p) = p_k$, so if k is a bit bigger, then you wouldn’t expect a prime with such a “large” least non-square.

Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.
Let $g(p)$ be the least non-square mod p. Let p_i be the i-th prime, i.e, $p_1 = 2$, $p_2 = 3$,

- $\#\{p \leq x \mid g(p) = 2\} \approx \frac{x}{2}$.
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{x}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{x}{2^k}$.

If $k = \log x / \log 2$ you would expect only one prime satisfying $g(p) = p_k$, so if k is a bit bigger, then you wouldn’t expect a prime with such a “large” least non-square.

Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.
Let $g(p)$ be the least non-square mod p. Let p_i be the i-th prime, i.e, $p_1 = 2, p_2 = 3, \ldots$.

- $\#\{p \leq x \mid g(p) = 2\} \approx \frac{x}{2}$.
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{x}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{x}{2^k}$.

If $k = \log x / \log 2$ you would expect only one prime satisfying $g(p) = p_k$, so if k is a bit bigger, then you wouldn’t expect a prime with such a “large” least non-square.

Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.

Enrique Treviño
Heuristics

Let $g(p)$ be the least non-square mod p. Let p_i be the i-th prime, i.e, $p_1 = 2$, $p_2 = 3$,

- $\#\{p \leq x \mid g(p) = 2\} \approx \frac{x}{2}$.
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{x}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{x}{2^k}$.
- If $k = \log x / \log 2$ you would expect only one prime satisfying $g(p) = p_k$, so if k is a bit bigger, then you wouldn’t expect a prime with such a “large” least non-square.

Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.
Let $g(p)$ be the least non-square mod p. Let p_i be the i-th prime, i.e, $p_1 = 2, p_2 = 3, \ldots$.

- $\# \{p \leq x \mid g(p) = 2\} \approx \frac{x}{2}$.
- $\# \{p \leq x \mid g(p) = 3\} \approx \frac{x}{4}$.
- $\# \{p \leq x \mid g(p) = p_k\} \approx \frac{x}{2^k}$.

If $k = \log x / \log 2$ you would expect only one prime satisfying $g(p) = p_k$, so if k is a bit bigger, then you wouldn’t expect a prime with such a “large” least non-square.

Then we want $k \approx C \log x$, and since $p_k \sim k \log k$ we have $g(x) \approx C \log x \log \log x$.
The least quadratic non-residue
The least inert prime in a real quadratic field
Dirichlet Characters

The least non-square mod p

Let $g(p)$ be the least non-square mod p. Our conjecture is

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \leq 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll \epsilon p^\frac{1}{4\sqrt{e}} + \epsilon$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log \log p$, that is
 $$g(p) = \Omega(\log p \log \log \log p).$$
Let $g(p)$ be the least non-square mod p. Our conjecture is

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \leq 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log \log p$, that is
 $$g(p) = \Omega(\log p \log \log \log p).$$
Let $g(p)$ be the least non-square mod p. Our conjecture is

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \leq 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll \epsilon \ p^{\frac{1}{4\sqrt{e}}} + \epsilon$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.

In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log \log p$, that is

$$g(p) = \Omega(\log p \log \log \log p).$$
Let $g(p)$ be the least non-square mod p. Our conjecture is

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \leq 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll \epsilon p^{\frac{1}{4\sqrt{e}} + \epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log \log p$, that is

$$g(p) = \Omega(\log p \log \log \log p).$$
Norton showed

\[
g(p) \leq \begin{cases}
3.9p^{1/4}\log p & \text{if } p \equiv 1 \pmod{4}, \\
4.7p^{1/4}\log p & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\]

Theorem (ET 2011)

Let \(p > 3 \) be a prime. Let \(g(p) \) be the least non-square \(\text{mod } p \). Then

\[
g(p) \leq \begin{cases}
0.9p^{1/4}\log p & \text{if } p \equiv 1 \pmod{4}, \\
1.2p^{1/4}\log p & \text{if } p \equiv 3 \pmod{4}.
\end{cases}
\]
Norton showed

\[g(p) \leq \begin{cases}
3.9p^{1/4} \log p & \text{if } p \equiv 1 \pmod{4}, \\
4.7p^{1/4} \log p & \text{if } p \equiv 3 \pmod{4}.
\end{cases} \]

Theorem (ET 2011)

Let \(p > 3 \) be a prime. Let \(g(p) \) be the least non-square mod \(p \). Then

\[g(p) \leq \begin{cases}
0.9p^{1/4} \log p & \text{if } p \equiv 1 \pmod{4}, \\
1.2p^{1/4} \log p & \text{if } p \equiv 3 \pmod{4}.
\end{cases} \]
Let d be a squarefree integer.

Then $\mathbb{Q}(\sqrt{d})$ is a quadratic field.

A prime $p \in \mathbb{Z}$ is inert if it remains prime when it is lifted to the quadratic field.

For example $\mathbb{Q}(\sqrt{-1}) = \mathbb{Q}(i) = \{a + bi \mid a, b \in \mathbb{Q}\}$. In this field, the inert primes are the primes $p \equiv 3 \pmod{4}$.

Note that 5 is not prime in $\mathbb{Q}(i)$ because $(1 + 2i)(1 - 2i) = 5$. Similarly any prime $p \equiv 1 \pmod{4}$ is not prime in $\mathbb{Q}(i)$ since p can be written as $a^2 + b^2$ for some $a, b \in \mathbb{Z}$ and hence $p = (a + bi)(a - bi)$.
The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1 \pmod{4}$ and $4d$ otherwise.

A prime p is inert in $\mathbb{Q}(\sqrt{d})$ if and only if the Kronecker symbol $(D/p) = -1$.

The Kronecker symbol is a generalization of the Legendre symbol:

$$\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } a \text{ is a square mod } p, \\
-1 & \text{if } a \text{ is a non-square mod } p, \\
0 & \text{if } p \mid a.
\end{cases}$$
The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1 \pmod{4}$ and $4d$ otherwise.

A prime p is inert in $\mathbb{Q}(\sqrt{d})$ if and only if the Kronecker symbol $(D/p) = -1$.

The Kronecker symbol is a generalization of the Legendre symbol

\[
\left(\frac{a}{p} \right) = \begin{cases}
1 & \text{if } a \text{ is a square } \text{ mod } p, \\
-1 & \text{if } a \text{ is a non-square } \text{ mod } p, \\
0 & \text{if } p | a.
\end{cases}
\]
Characterization of inert primes in quadratic fields

- The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1 \pmod{4}$ and $4d$ otherwise.
- A prime p is inert in $\mathbb{Q}(\sqrt{d})$ if and only if the Kronecker symbol $(D/p) = -1$.
- The Kronecker symbol is a generalization of the Legendre symbol
 \[
 \left(\frac{a}{p} \right) = \begin{cases}
 1 & \text{if } a \text{ is a square mod } p, \\
 -1 & \text{if } a \text{ is a non-square mod } p, \\
 0 & \text{if } p \mid a.
 \end{cases}
 \]
The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant $D > 3705$, there is always at least one prime $p \leq \sqrt{D}/2$ such that the Kronecker symbol $(D/p) = -1$.

Theorem (ET, 2010)

For any positive fundamental discriminant $D > 1596$, there is always at least one prime $p \leq D^{0.45}$ such that the Kronecker symbol $(D/p) = -1$.
The least quadratic non-residue

The least inert prime in a real quadratic field

Dirichlet Characters

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant $D > 3705$, there is always at least one prime $p \leq \sqrt{D}/2$ such that the Kronecker symbol $(D/p) = -1$.

Theorem (ET, 2010)

For any positive fundamental discriminant $D > 1596$, there is always at least one prime $p \leq D^{0.45}$ such that the Kronecker symbol $(D/p) = -1$.
Elements of the Proof

- Use a computer to check the “small” cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the “infinite case”, i.e. the very large D. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a “smoothed” version of it.
- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.
Elements of the Proof

- Use a computer to check the “small” cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.

- Use analytic techniques to prove it for the “infinite case”, i.e. the very large D. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a “smoothed” version of it.

- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.
Elements of the Proof

- Use a computer to check the “small” cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the “infinite case”, i.e. the very large D. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a “smoothed” version of it.
- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.
The least quadratic non-residue
The least inert prime in a real quadratic field
Dirichlet Characters

Manitoba Scalable Sieving Unit
Let n be a positive integer. \(\chi : \mathbb{Z} \rightarrow \mathbb{C} \) is a Dirichlet character mod n if the following three conditions are satisfied:

1. \(\chi(a + n) = \chi(a) \) for all \(a \in \mathbb{Z} \).
2. \(\chi(ab) = \chi(a)\chi(b) \) for all \(a, b \in \mathbb{Z} \).
3. \(\chi(a) = 0 \) if and only if $\gcd(a, n) > 1$.

Examples of Dirichlet characters are the Legendre symbol and the Kronecker symbol.
Dirichlet Character

Let \(n \) be a positive integer.
\(\chi : \mathbb{Z} \to \mathbb{C} \) is a Dirichlet character mod \(n \) if the following three conditions are satisfied:

- \(\chi(a + n) = \chi(a) \) for all \(a \in \mathbb{Z} \).
- \(\chi(ab) = \chi(a)\chi(b) \) for all \(a, b \in \mathbb{Z} \).
- \(\chi(a) = 0 \) if and only if \(\gcd(a, n) > 1 \).

Examples of Dirichlet characters are the Legendre symbol and the Kronecker symbol.
Let n be a positive integer.

$\chi : \mathbb{Z} \to \mathbb{C}$ is a Dirichlet character mod n if the following three conditions are satisfied:

- $\chi(a + n) = \chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a) = 0$ if and only if $\gcd(a, n) > 1$.

Examples of Dirichlet characters are the Legendre symbol and the Kronecker symbol.
Dirichlet Character

Let \(n \) be a positive integer.
\(\chi : \mathbb{Z} \rightarrow \mathbb{C} \) is a Dirichlet character mod \(n \) if the following three conditions are satisfied:

1. \(\chi(a + n) = \chi(a) \) for all \(a \in \mathbb{Z} \).
2. \(\chi(ab) = \chi(a)\chi(b) \) for all \(a, b \in \mathbb{Z} \).
3. \(\chi(a) = 0 \) if and only if \(\gcd(a, n) > 1 \).

Examples of Dirichlet characters are the Legendre symbol and the Kronecker symbol.
Let n be a positive integer.

$\chi : \mathbb{Z} \rightarrow \mathbb{C}$ is a Dirichlet character mod n if the following three conditions are satisfied:

- $\chi(a + n) = \chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a) = 0$ if and only if $\gcd(a, n) > 1$.

Examples of Dirichlet characters are the Legendre symbol and the Kronecker symbol.
Let \(\chi \) be a Dirichlet character to the modulus \(q > 1 \). Let

\[
S(\chi) = \max_{M,N} \left| \sum_{n=M+1}^{M+N} \chi(n) \right|
\]

The Pólya–Vinogradov inequality (1918) states that there exists an absolute universal constant \(c \) such that for any Dirichlet character \(S(\chi) \leq c\sqrt{q}\log q \).

Under GRH, Montgomery and Vaughan showed that \(S(\chi) \ll \sqrt{q}\log\log q \).

Paley showed in 1932 that there are infinitely many quadratic characters such that \(S(\chi) \gg \sqrt{q}\log\log q \).
The least quadratic non-residue
The least inert prime in a real quadratic field
Dirichlet Characters

Explicit Pólya–Vinogradov

Theorem (Hildebrand, 1988)

For χ a primitive character to the modulus q > 1, we have

\[|S(\chi)| \leq \left\{ \begin{array}{ll}
\left(\frac{2}{3\pi^2} + o(1) \right) \sqrt{q} \log q & , \chi \text{ even}, \\
\left(\frac{1}{3\pi} + o(1) \right) \sqrt{q} \log q & , \chi \text{ odd}.
\end{array} \right. \]

Theorem (Pomerance, 2009)

For χ a primitive character to the modulus q > 1, we have

\[|S(\chi)| \leq \left\{ \begin{array}{ll}
\frac{2}{\pi^2} \sqrt{q} \log q + \frac{4}{\pi^2} \sqrt{q} \log \log q + \frac{3}{2} \sqrt{q} & , \chi \text{ even}, \\
\frac{1}{2\pi} \sqrt{q} \log q + \frac{1}{\pi} \sqrt{q} \log \log q + \sqrt{q} & , \chi \text{ odd}.
\end{array} \right. \]
Some Applications of the Explicit Estimates

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $> 10^{70}$.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p > 3$ there is a primitive root g and an integer $x \in [1, p - 1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
Some Applications of the Explicit Estimates

- The explicit estimate on the least quadratic non-residue showed earlier today.

- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.

- McGown proved that there is no norm-Euclidean cubic field with discriminant $> 10^{70}$.

- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p > 3$ there is a primitive root g and an integer $x \in [1, p - 1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
The least quadratic non-residue and related problems

Some Applications of the Explicit Estimates

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant $> 10^{70}$.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime $p > 3$ there is a primitive root g and an integer $x \in [1, p - 1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
Some Applications of the Explicit Estimates

- The explicit estimate on the least quadratic non-residue showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant \(> 10^{70} \).
- Levin and Pomerance proved a conjecture of Brizolis that for every prime \(p > 3 \) there is a primitive root \(g \) and an integer \(x \in [1, p - 1] \) with \(\log_g x = x \), that is, \(g^x \equiv x \) (mod \(p \)).
Let M, N be real numbers with $0 < N \leq q$, then define $S^*(\chi)$ as follows:

$$S^*(\chi) = \max_{M,N} \left| \sum_{M \leq n \leq M+2N} \chi(n) \left(1 - \left| \frac{a - M}{N} - 1 \right| \right) \right|.$$

Theorem (Levin, Pomerance, Soundararajan, 2009)

Let χ be a primitive character to the modulus $q > 1$, and let M, N be real numbers with $0 < N \leq q$, then

$$S^*(\chi) \leq \sqrt{q} - \frac{N}{\sqrt{q}}.$$
The least quadratic non-residue
The least inert prime in a real quadratic field
Dirichlet Characters

Lower bound for the smoothed Pólya–Vinogradov

Theorem (ET, 2010)

Let χ be a primitive character to the modulus $q > 1$, and let M, N be real numbers with $0 < N \leq q$, then

$$S^*(\chi) \geq \frac{2}{\pi^2} \sqrt{q}.$$

Therefore, the order of magnitude of $S^*(\chi)$ is \sqrt{q}.

Enrique Treviño

The least quadratic non-residue and related problems
Tighter smoothed PV

Theorem (ET, 2010)

Let \(\chi \) be a primitive character to the modulus \(q > 1 \), let \(M, N \) be real numbers with \(0 < N \leq q \). Then

\[
\left| \sum_{M \leq n \leq M+2N} \chi(n) \left(1 - \left| \frac{n - M}{N} - 1 \right| \right) \right| \leq \frac{\phi(q)}{q} \sqrt{q} + 2^{\omega(q)-1} \frac{N}{\sqrt{q}}.
\]
Let $\chi(p) = \left(\frac{D}{p} \right)$. Since D is a fundamental discriminant, χ is a primitive character of modulus D. Consider

$$S_\chi(N) = \sum_{n \leq 2N} \chi(n) \left(1 - \left| \frac{n}{N} - 1 \right| \right).$$

By smoothed PV, we have

$$|S_\chi(N)| \leq \frac{\phi(D)}{D} \sqrt{D} + 2^{\omega(D)-1} \frac{N}{\sqrt{D}}.$$
Now,

\[S_{\chi}(N) = \sum_{n \leq 2N \atop (n,D)=1} \left(1 - \left| \frac{n}{N} - 1 \right| \right) - 2 \sum_{B < p \leq 2N \atop \chi(p) = -1} \sum_{n \leq \frac{2N}{p} \atop (n,D)=1} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]

Therefore,

\[\frac{\phi(D)}{D} \left(\sqrt{D} + 2^{\omega(D)} - 1 \right) \frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D} N - 2^{\omega(D) - 2} - 2 \sum_{n \leq \frac{2N}{B} \atop (n,D)=1} \sum_{B < p \leq \frac{2N}{n}} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]

Now, letting \(N = c\sqrt{D} \) for some constant \(c \) we get

\[0 \geq c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4} \right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{n \leq \frac{2N}{B} \atop (n,D)=1} \sum_{B < p \leq \frac{2N}{n}} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]
Now,

\[S_\chi(N) = \sum_{n \leq 2N} \left(1 - \left| \frac{n}{N} - 1 \right| \right) - 2 \sum_{B < p \leq 2N} \sum_{n \leq \frac{2N}{p}} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]

Therefore,

\[\frac{\phi(D)}{D} \sqrt{D} + 2^{\omega(D)} - 1 \frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D} N - 2^{\omega(D)} - 2 \sum_{n \leq \frac{2N}{B}} \sum_{B < p \leq \frac{2N}{n}} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]

Now, letting \(N = c\sqrt{D} \) for some constant \(c \) we get

\[0 \geq c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4} \right) \frac{D}{\phi(D) \sqrt{D}} - 2 \frac{D}{\sqrt{D} \phi(D)} \sum_{n \leq \frac{2N}{B}} \sum_{B < p \leq \frac{2N}{n}} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]
Now,

\[S_{\chi}(N) = \sum_{n \leq 2N \atop (n,D)=1} \left(1 - \left| \frac{n}{N} - 1 \right| \right) - 2 \sum_{B < p \leq 2N \atop \chi(p) = -1 \atop (n,D)=1} \sum_{\frac{n}{p} \leq \frac{2N}{B}} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]

Therefore,

\[\frac{\phi(D)}{D} \sqrt{D} + 2^{\omega(D)-1} \frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D} N - 2^{\omega(D)-2} - 2 \sum_{n \leq \frac{2N}{B} \atop (n,D)=1} \sum_{B < p \leq \frac{2N}{n}} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]

Now, letting \(N = c \sqrt{D} \) for some constant \(c \) we get

\[0 \geq c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4} \right) \frac{D}{\phi(D) \sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{n \leq \frac{2N}{B} \atop (n,D)=1} \sum_{B < p \leq \frac{2N}{n}} \left(1 - \left| \frac{np}{N} - 1 \right| \right). \]
Eventually we have,

\[0 \geq c - 1 - 2^\omega(D) \left(\frac{c}{2} + \frac{1}{4} \right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2c}{\log B} e^\gamma \left(1 + \frac{1}{\log^2 \left(\frac{2N}{B} \right)} \right) \log \left(\frac{2N}{B} \right) \prod_{p \mid D, p > \frac{2N}{B}} \frac{p}{p - 1}. \]

For \(D \geq 10^{24} \) this is a contradiction.
Hybrid Case

We have as in the previous case

\[0 \geq c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4} \right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{n \leq \frac{2N}{B}} \sum_{B < p \leq \frac{2N}{n} \atop (n,D)=1} \left(1 - \left| \frac{np}{N} - 1 \right| \right) \]

In this case, since we don’t have to worry about the infinite case, we can have a messier version of

\[\sum_{B < p \leq \frac{2N}{n}} \left(1 - \left| \frac{np}{N} - 1 \right| \right) . \]

The idea is to consider \(2^{13} \) cases, one for each possible value of \(\gcd(D, M) \) where \(M = \prod_{p \leq 41} p \).

Enrique Treviño
We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for
\[21853026051351495 = 2.2\ldots \times 10^{16}. \]

For even values we get the theorem for
\[1707159924755154870 = 1.71\ldots \times 10^{18}. \]

Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.

QED.
We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for
$$21853026051351495 = 2.2\ldots \times 10^{16}.$$
For even values we get the theorem for
$$1707159924755154870 = 1.71\ldots \times 10^{18}.$$
Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
\ QED.
We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for
\[21853026051351495 = 2.2 \ldots \times 10^{16}. \]
For even values we get the theorem for
\[1707159924755154870 = 1.71 \ldots \times 10^{18}. \]
Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.

QED.
We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for
\[21853026051351495 = 2.2 \ldots \times 10^{16}. \]

For even values we get the theorem for
\[1707159924755154870 = 1.71 \ldots \times 10^{18}. \]

Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.

QED.
Future Work

- Bringing the upper bound further down.
- Generalizing to D’s not necessarily fundamental discriminants.
- Generalizing to other characters, not just the Kronecker symbol.
- Improving McGown’s result on norm euclidean cubic fields.