Explicit Burgess inequalities for cubefree moduli

Enrique Treviño (joint work with Elchin Hasanalizade, Hua Lin, Andradis Luna Martínez, Greg Martin)

Lake Forest College

West Coast Number Theory December 17, 2025

Dirichlet Character

Let *n* be a positive integer.

 $\chi:\mathbb{Z}\to\mathbb{C}$ is a Dirichlet character $\operatorname{mod} n$ if the following three conditions are satisfied:

- $\chi(a+n)=\chi(a)$ for all $a\in\mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a) \neq 0$ if and only if gcd(a, n) = 1.

The Legendre symbol is an example of a Dirichlet character.

Pólya-Vinogradov

Let χ be a Dirichlet character to the modulus q > 1. Let

$$S(\chi) = \max_{M,N} \left| \sum_{n=M+1}^{M+N} \chi(n) \right|$$

The Pólya–Vinogradov inequality (1918) states that there exists an absolute universal constant c such that for any Dirichlet character $S(\chi) \le c\sqrt{q}\log q$.

Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.

Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

Burgess Inequality

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where q>1, r is a positive integer and $\epsilon>0$ is a real number. Then

$$|\mathcal{S}_{\chi}(M,N)| = \left|\sum_{M < n \leq M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon}$$

for r=1,2,3 and for any $r\geq 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Quadratic Case for Burgess

Theorem (Booker, 2006)

Let $p>10^{20}$ be a prime number $\equiv 1\pmod 4$, $r\in\{2,\ldots,15\}$ and $0< M, N\le 2\sqrt{p}$. Let χ be a quadratic character $\pmod p$. Then

$$\left|\sum_{M\leq n< M+N} \chi(n)\right| \leq \alpha(r) p^{\frac{r+1}{4r^2}} (\log p + \beta(r))^{\frac{1}{2r}} N^{1-\frac{1}{r}}$$

where $\alpha(r)$, $\beta(r)$ are given by

r	$\alpha(r)$	$\beta(r)$	r	$\alpha(r)$	$\beta(r)$
2	1.8221	8.9077	9	1.4548	0.0085
3	1.8000	5.3948	10	1.4231	-0.4106
4	1.7263	3.6658	11	1.3958	-0.7848
5	1.6526	2.5405	12	1.3721	-1.1232
6	1.5892	1.7059	13	1.3512	-1.4323
7	1.5363	1.0405	14	1.3328	-1.7169
8	1.4921	0.4856	15	1.3164	-1.9808

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET, 2015)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \le 2.74N^{1-\frac{1}{r}}p^{\frac{r+1}{4r^2}}(\log p)^{\frac{1}{r}}.$$

Theorem (Francis, 2021)

Improvements for $2 \le r \le 10$ with $N < 2p^{5/8}$.

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET, 2015)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \leq 2.74N^{1-\frac{1}{r}}p^{\frac{r+1}{4r^2}}(\log p)^{\frac{1}{r}}.$$

Theorem (Francis, 2021)

Improvements for $2 \le r \le 10$ with $N < 2p^{5/8}$.

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET, 2015)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \leq 2.74N^{1-\frac{1}{r}}p^{\frac{r+1}{4r^2}}(\log p)^{\frac{1}{r}}.$$

Theorem (Francis, 2021)

Improvements for $2 \le r \le 10$ with $N < 2p^{5/8}$.

Francis Table

r	$p_0 = 10^5$	$p_0 = 10^6$	$p_0 = 10^7$	$p_0 = 10^8$	$p_0 = 10^9$	$p_0 = 10^{10}$
2	3.7125	3.4682	3.3067	3.1980	3.1259	3.0679
3	2.7979	2.6371	2.5131	2.4318	2.3776	2.3358
4	2.4157	2.2980	2.2022	2.1513	2.0994	2.0613
5	2.1801	2.0981	2.0273	1.9755	1.9419	1.9084
6	2.0874	2.0037	1.9424	1.8962	1.8353	1.8054
7	1.8948	1.8454	1.8087	1.7820	1.7561	1.7291
8	1.7993	1.7609	1.7306	1.7093	1.6894	1.6696
9	1.7266	1.6963	1.6692	1.6492	1.6323	1.6186
10	1.6720	1.6411	1.6175	1.5991	1.5845	1.5727
r	$p_0 = 10^{11}$	$p_0 = 10^{12}$	$p_0 = 10^{13}$	$p_0 = 10^{14}$	$p_0 = 10^{15}$	$p_0 = 10^{16}$
2	3.0280	2.9997	2.9790	2.9635	2.9515	2.9421
3	2.3025	2.2782	2.2600	2.2461	2.2351	2.2263
4	2.0329	2.0117	1.9956	1.9831	1.9733	1.9654
5	1.8831	1.8638	1.8487	1.8367	1.8272	1.8194
6	1.7825	1.7646	1.7503	1.7388	1.7294	1.7216
7	1.7081	1.6914	1.6779	1.6669	1.6577	1.6500
8	1.6501	1.6345	1.6219	1.6112	1.6023	1.5946
9	1.6029	1.5882	1.5762	1.5661	1.5575	1.5501
10	1.5629	1.5499	1.5384	1.5287	1.5205	1.5134
r	$p_0 = 10^{17}$	$p_0 = 10^{18}$	$p_0 = 10^{19}$	$p_0 = 10^{20}$	$p_0 = 10^{50}$	$p_0 = 10^{75}$
2	2.9345	2.9282	2.9230	2.9185	2.8752	2.8658
3	2.2190	2.2128	2.2076	2.2029	2.1503	2.1368
4	1.9590	1.9537	1.9493	1.9455	1.9094	1.9011
5	1.8130	1.8077	1.8033	1.7996	1.7689	1.7630
6	1.7151	1.7097	1.7051	1.7012	1.6715	1.6668
7	1.6435	1.6380	1.6333	1.6292	1.5986	1.5947
8	1.5883	1.5828	1.5779	1.5738	1.5986	1.5382
9	1.5439	1.5384	1.5336	1.5294	1.4959	1.4925
10	1.5072	1.5019	1.4972	1.4930	1.4581	1.4548

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰. Later (2017) with Lezowski they proved it for discriminants over 10¹⁰⁰.
- Bagger, Booker, Kerr, McGown, Starichkova, and Trudgian were able to classify all norm-Euclidean cubic fields. (2025)
- Explicit bound on the least prime primitive root done by Cohen,
 Oliveira e Silva and Trudgian (2016).
- Elkies used explicit Burgess inequalities to prove a particular elliptic curve had rank 16 (2025).
- Johnston, Ramaré, Trudgian used Burgess inequalities to improve explicit bounds $L(1,\chi)$.

Burgess Inequality

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where q>1, r is a positive integer and $\epsilon>0$ is a real number. Then

$$|\mathcal{S}_{\chi}(M,N)| = \left|\sum_{M < n \leq M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon}$$

for r=1,2,3 and for any $r\geq 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Composite Burgess

Theorem (Jain-Sharma, Khale, Liu, 2021)

Let χ be a primitive character mod q with $q \geq e^{e^{9.594}}$. Then, for $N \leq q^{\frac{5}{8}}$,

$$|S_{\chi}(\textit{M},\textit{N})| \leq 9.07 \sqrt{\textit{N}} q^{\frac{3}{16}} \log^{\frac{1}{4}}(q) \left(2^{\omega(q)} au(q)\right)^{\frac{3}{4}} \left(rac{q}{\phi(q)}
ight)^{\frac{1}{2}},$$

where $\tau(q)$ is the number of divisors of q and $\omega(q)$ is the number of distinct prime factors of q.

This is the r=2 case of the Burgess inequality made explicit for all large enough moduli q.

Burgess for cubefree moduli and r > 3

Theorem (H-L-L-M-T)

Let $r \geq 2$ be an integer and χ be a primitive Dirichlet character modulo q. Let $m_r(q) = \min\left\{ au_{2r}(q), \left(rac{ au(q)}{2}
ight)^{2r-1}, rac{q}{2r}
ight\}$. Let C(r) be defined as in Table 1. Let $a(r) = 2 \log 2 (3.0758r + 1.38402 \log(4r) - 1.5379)$. Then, for $q \ge \max\{10^{1145}, e^{e^{a(r)}}\}$, if r = 2 or q is cubefree, we have

$$|S_{\chi}(M,N)| \leq C(r)N^{1-\frac{1}{r}}q^{\frac{r+1}{4r^2}}(\log q)^{\frac{1}{2r}}\left((4r)^{\omega(q)}m_r(q)\right)^{\frac{1}{2r}-\frac{1}{2r^2}}\left(\frac{q}{\phi(q)}\right)^{\frac{1}{r}}.$$

Furthermore, we have a constant D(r) from Table 1 such that

$$|S_{\chi}| \leq (D(r) + o(1))N^{1 - \frac{1}{r}}q^{\frac{r+1}{4r^2}}(\log q)^{\frac{1}{2r}}\left((4r)^{\omega(q)}m_r(q)\right)^{\frac{1}{2r} - \frac{1}{2r^2}}\left(\frac{q}{\phi(q)}\right)^{\frac{1}{r}}.$$

Another Burgess inequality for cubefree with less restrictions on the size of q

Theorem (H-L-L-M-T-2)

Let χ be a primitive Dirichlet character modulo q. Let C(r) be defined as in Table 1. Then, for $q \geq \max\{10^{1145}, 2^{4r-2}\}$, if r=2 or q is cubefree, we have

$$|S_{\chi}(M,N)| \leq C(r)N^{1-\frac{1}{r}}q^{\frac{r+1}{4r^2}}(\log q)^{\frac{1}{2r}}\left((4r)^{\omega(q)}m_r(q)\right)^{\frac{1}{2r}}\left(\frac{q}{\phi(q)}\right)^{\frac{1}{r}}.$$

Table of constants

r	C(r)	D(r)	
2	15.219	8.362	
3	5.359	4.581	
4	3.671	3.396	
5	2.953	2.811	
6	2.549	2.462	
7	2.290	2.229	
8	2.108	2.063	
9	1.973	1.938	
≥10	1.869	1.841	

Table: Constants in the Burgess inequality for values of r.

Key Inequality to prove Burgess Inequalities

Theorem (Weil-type inequality for prime p)

Let $r \ge 2$ be an integer and $B \ge 2$ be real. Let χ be a primitive Dirichlet character mod p, then

$$\sum_{x=1}^{p} \left| \sum_{1 \leq b \leq B} \chi(x+b) \right|^{2r} < (2r-1)!! p B^{r} + (2r-1)\sqrt{p} B^{2r}.$$

Theorem (Weil-type inequality)

Let $r \ge 2$ and q be positive integers such that r = 2 or q is cubefree. Let χ be a primitive Dirichlet modulo q. Let $B \ge 2$ be a real number. Then

$$\sum_{x=1}^{q} \left| \sum_{1 \leq b \leq B} \chi(x+b) \right|^{2r} \leq \frac{r^{2r}}{r!} B^{r} q + 2r(4r)^{\omega(q)} B^{2r} m_{r}(q) \sqrt{q}.$$

Celebrating

Thank you!