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Abstract. Let K be a number field. For each nonzero, nonunit α belonging to the ring of integers
OK of K, the elasticity ρ(α) of α is the largest possible ratio m/n, where m and n range over
lengths of factorizations of α into irreducible elements of OK . A celebrated theorem of Narkiewicz,
Steffan, and Valenza asserts that the largest value of ρ(α) admits a simple description in terms of
the Davenport constant of the class group ofK. Less well-known is that the values ρ(α) concentrate

around a single real number ρtyp(OK) (as shown by Narkiewicz and Śliwa). We describe ρtyp(OK)
in terms of a game played on the class group of K, and we analyze this game for two new families
of groups.

1. Introduction

1.1. Stretching: the truth about unique factorization. Recall that when D is an integral
domain, a nonzero nonunit π ∈ D is called irreducible if π cannot be written as a product of two
nonunits in D. We call D atomic if every nonzero nonunit of D admits at least one representation
as a product of irreducibles of D. A unique factorization domain (or factorial domain, or
UFD) is a domain where every nonzero nonunit factors uniquely into irreducibles. That is, D is
atomic, and whenever two products of irreducibles coincide, say

(1) π1 · · · πk = ρ1 · · · ρℓ,

there is an obvious explanation for this: Namely,

(i) k = ℓ, and

(ii) for some permutation τ of {1, 2, 3, . . . , k}, and some units ε1, . . . , εk ∈ D, we have πτ(i) =
εiρi for all i = 1, 2, . . . , k.

Many of the domains one encounters in a first algebra course are UFDs (including Z, F[x] for F a
field, Z[x], and Z[i]), but as soon as one ventures out into the mathematical wild, UFDs start to
appear thin on the ground.

If D is not a UFD, how far away is it from being one? Put slightly differently, when unique
factorization breaks down, how disastrous is its failure?

In 1980, R. J. Valenza [17] — inspired by work of L. Carlitz twenty years prior [2] — introduced
“elasticity” as a possible answer to these questions. Let D be an atomic domain. For each nonzero
nonunit α ∈ D, we define the length spectrum L(α) of α as the set of all k for which α admits
a factorization into precisely k irreducible elements of D:

L(α) = {k : α = π1 · · · πk for some irreducibles πi}.
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The elasticity ρ(α) of α is defined as the “multiplicative diameter” of L(α). More precisely,

ρ(α) =
supL(α)
inf L(α)

∈ [1,∞].

The elasticity of the domain D itself, denoted ρ(D), is taken to be

sup
α

ρ(α),

where α ranges over all the nonzero nonunits of D.

If D is atomic (and not a field), then ρ(D) ≥ 1. Having ρ(D) = 1 can be thought of as being
halfway to unique factorization, in the following sense: Whenever two products of irreducibles
coincide as in (1), k = ℓ. That is, we have condition (i) (but not necessarily (ii) !) in the above
definition of a UFD. Accordingly, domains with ρ(D) = 1 are called half-factorial (see [4] for a
survey of research into this class of domains).

This article concerns elasticities of elements from rings of integers of number fields.

A number field is a field K containing Q for which [K : Q] < ∞. To each number field K is
associated a ring of integers, denoted OK , which stands in relation to K as the familiar ring Z
stands in relation to Q. (For precise definitions of all terms from algebraic number theory used
here, see, e.g., [16].) The rings OK are all atomic domains, but they are frequently non-UFDs.
For example, the number field K = Q(

√
−5) has ring of integers OK = Z[

√
−5], and the failure

of unique factorization in Z[
√
−5] is well-known. Indeed, if you asked a random person on the

street for a counterexample to unique factorization, 99% of them would back away slowly, but the
remaining 1% would trot out the equation

(1 +
√
−5) · (1−

√
−5) = 2 · 3,

violating condition (ii) in our UFD definition.

While the nonzero, nonunit elements of the rings OK need not factor uniquely into irreducible
elements (up to order and unit-multiples), a foundational 19th century result of Richard Dedekind
asserts that the nonzero, nonunit ideals of OK always factor uniquely into irreducible ideals (up
to the order of the factors). Here the product of two ideals I, J is defined as the smallest ideal
containing all the products αβ, with α ∈ I, β ∈ J , and an ideal is irreducible if it is not (0), not
(1) = OK , and cannot be expressed as IJ for any nonunit ideals I and J .1

If α and β are elements of OK , the product of the principal ideals generated by α and β is
the principal ideal generated by the product αβ. It follows that OK is a UFD precisely when
its principal ideals factor uniquely into principal ideals that are irreducible as principal ideals,
meaning not (0) or (1) and not the product of two nonunit principal ideals. We have seen that
this flavor of unique factorization is sometimes too much to hope for. In these cases, Dedekind tells
us it is not OK that is deficient, but our overly provincial vision. Restoring unique factorization
is as simple as granting nonprincipal ideals full citizenship.

There is a gadget attached to every number field K that functions as a bridge between the
factorization-friendly world where all ideals are considered and the more temperamental realm of
elements (or equivalently, of only principal ideals): the class group Cl(K). Formally, Cl(K) is
the quotient of the group of (nonzero, fractional) ideals of OK by the group of (nonzero, fractional)

1Dedekind’s result is usually stated in terms of prime ideals. In fact, in OK the class of prime ideals and the
class of irreducible ideals coincide, as a consequence of the maxim “to divide is to contain”.
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principal ideals. In informal contexts, number theorists often introduce the class group as a device
that “measures the failure of unique factorization.”

We now have two yardsticks with which to measure how far away OK is from being a UFD: the
elasticity ρ(OK), which is a number (a priori possibly ∞), and Cl(K), a finite abelian group. The
link between the two is provided by an extraordinarily elegant result, due to R. J. Valenza2 [17],
W. Narkiewicz [12], and J.-L. Steffan [15].

Before stating their theorem, we need a definition from additive combinatorics. If G is a finite
abelian group, the Davenport constant of G, denoted DavG, is the smallest positive integer D
possessing the following property:

Every sequence g1, . . . , gD ∈ G possesses a subsequence summing to 0 in G.

(In what follows, groups are always written additively, with the identity denoted by 0. “Subse-
quence” always means “nonempty subsequence”.) The Davenport constant always exists, and in
fact, DavG ≤ #G, with equality for cyclic groups G (we prove this as Lemma 5.1 below).

Theorem A. Let K be a number field. If Cl(K) is trivial, then OK is a UFD and ρ(OK) = 1.
Otherwise,

ρ(OK) =
1

2
DavCl(K).

As an example, consider K = Q(
√
−5). The class group of Q(

√
−5) is cyclic of order 2, so that

Theorem A yields ρ(Z[
√
−5]) = 1. That is, Z[

√
−5] is a half-factorial domain. On the other hand,

the class group of K = Q(
√
−26) is cyclic of order 3, and so its ring of integers Z[

√
−26] has

elasticity 3
2
. That the elasticity is at least 3

2
can be seen from the equation

(1 +
√
−26)(1−

√
−26) = 3 · 3 · 3.

(Of course, one should check that all the factors on both sides are irreducible. We leave this to
the reader.)

We have set up our definitions so that for every nonzero nonunit α ∈ OK , it is automatic that

1 ≤ ρ(α) ≤ ρ(OK).

It is natural to wonder how the numbers ρ(α) are distributed between these two extremes as
α varies. It does not seem to be so well-known that a satisfactory answer to this question was
given by Narkiewicz and J. Śliwa [13] already in 1977 (yes, a few years before the formal study of
elasticity!).

For each number field K and each property P pertaining to principal ideals of OK , we say that
P holds for almost all principal ideals if it holds for asymptotically 100% of them, when ordered
by norm. More precisely, we require that

lim
X→∞

#{principal ideals (α) : |Nα| ≤ X,P holds for (α)}
#{principal ideals (α) : |Nα| ≤ X}

= 1,

where Nα denotes the norm of α.

2The 1990 publication date of Valenza’s paper is somewhat misleading. Valenza’s paper was received at the
journal on November 19, 1980.
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Figure 1. Initial configuration of (Z/8Z)-solitaire with stacks of height X = 8.

We can now state the theorem of Narkiewicz and Śliwa, which asserts that the elasticities ρ(α)
concentrate around a single value, here denoted ρtyp(OK) (typ for “typical”).3

Theorem B. Let K be a number field. There is a real number ρtyp(OK) for which the following
holds. For each fixed ϵ > 0, almost all principal ideals (α) of OK are such that

(1− ϵ)ρtyp(OK) < ρ(α) < (1 + ϵ)ρtyp(OK).

Furthermore, ρtyp(OK) depends only on (the isomorphism class of ) Cl(K).

The way we have stated Theorem B comes off as a little coy in comparison with Theorem A. The
elasticity ρ(OK) is half the Davenport constant of Cl(K) (unless OK is a UFD). Which function
of Cl(K) is ρtyp(OK)? The proof in [13] supplies an answer, in terms of the solution to a certain
linear programming problem. One of our primary motivations for writing is to offer an entirely
equivalent but more whimsical description (Theorem B′ below), in terms of a constant associated
to optimal play in a game we call group solitaire. We suspect this game will be of independent
interest, and we hope that our advertisement here will encourage its further study.

1.2. Playing by yourself, in a group: G-solitaire. Let G be a finite abelian group, and let
X be an even positive integer. The game of G-solitaire, initialized at height X, is played as
follows: We begin with a “table” consisting of #G stacks of poker chips, labeled by the distinct
elements of G, each stack having the same starting height (number of chips) X. We view the chips
in each stack as copies of the corresponding element of G.

Since X is even, the sum of the chips in the initial configuration is equal to

(2) X
∑
g∈G

g =
X

2

∑
g∈G

g +
X

2

∑
g∈G

g =
X

2

∑
g∈G

g +
X

2

∑
g∈G

(−g) = 0.

A move in G-solitaire consists of discarding any (nonempty) collection of chips that sums to 0 in
G, as long as no proper subcollection also sums to 0. In view of (2), any sequence of legal moves
eventually clears the table. The objective in G-solitaire is to clear the table with the smallest
possible number of moves, denoted Σ(G;X).

For any G, the only way chips from the 0-stack can be removed is one-at-a-time. When G is
trivial, every chip belongs to the 0-stack, and thus Σ(G;X) = X. Now suppose G ∼= Z/2Z. No

3Narkiewicz and Śliwa do not state Theorem B directly: Their concern is with the individual maximum and
minimum elements of L(α) (rather than the ratio of the two). Furthermore, they restrict to rational integers α,
rather than letting α range over OK . But their methods certainly suffice to establish Theorem B, and we feel it is
appropriate to credit them.
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matter how we clear the table, we spend X moves clearing the 0-stack, and the X chips in the
1-stack end up removed 2-at-a-time. Hence, Σ(G;X) = X + 1

2
X = 3

2
X.

In these two examples, there is only one way to clear the table (up to the order moves are made).
But matters get more interesting already for G ∼= Z/3Z. As always, we are forced to clear the
0-stack in X moves, one-at-a-time, but now there are multiple ways to finish off. For instance, we
can clear the 2X nonzero chips 2-at-a-time, each move discarding 1 chip from the 1-pile and 1 chip
from the 2-stack. This uses X +X = 2X total moves. A more efficient procedure is to remove 3
chips from the 1-stack ⌊X/3⌋ times, 3 chips from the 2-stack ⌊X/3⌋ times, and then to sweep up
what is left in at most 2 further moves. This latter strategy requires only ≈ X+ 2

3
X = 5

3
X moves.

The following result (implicit in [13]) could be considered “The Fundamental Theorem of G-
Solitaire.” It guarantees that for each fixed G, the function Σ(G;X) grows linearly with X with
a well-defined constant of proportionality.

Proposition 1.1. For each fixed finite abelian group G, there is a positive constant ClrG for
which

lim
X→∞

Σ(G;X)

X
= ClrG.

Furthermore, ClrG is a rational number.

We call ClrG the clearing constant associated to G. For instance, the trivial group has clearing
constant 1, while ClrZ/2Z = 3

2
and ClrZ/3Z ≤ 5

3
. Later we shall see that ClrZ/3Z = 5

3
(see eq.

(8)).

We can now complete the statement of Narkiewicz and Śliwa’s Theorem B.

Theorem B′. For each number field K, Theorem B holds with

ρtyp(OK) =
1 + #Cl(K)

2ClrCl(K)
.

Shortly (§2) we will sketch the proofs of Proposition 1.1 and Theorem B′. We pause first for a few
remarks.

From Theorem B′ and our above discussion of clearing constants, we see that ρtyp(OK) = 1
whenever #Cl(K) = 1 or 2. This is no surprise: In these cases, ρ(OK) = 1 (by Theorem A),
so that ρ(α) = 1 for all nonzero, nonunit α ∈ OK . By contrast, when #Cl(K) = 3, we have
ρ(OK) = 3

2
while ρtyp(OK) = 6

5
. (One can prove more generally that 1 < ρtyp(OK) < ρ(OK)

whenever OK is not half-factorial.)

Of course, one would like to determine the values of ClrG for as wide a class of groups G as
possible. The first efforts in this direction seem to have been made by S. Allen and P.A.B.
Pleasants [1].4 They determined ClrG for all homocyclic p-groups, meaning all groups of the form
(Z/prZ)s, where p is prime and r, s are positive integers (we state their result later as eq. (11)).
They also found, by ad hoc calculations, that

ClrZ/2Z⊕ Z/4Z =
8

3
and ClrZ/6Z =

13

6
.

4Their work takes place in the same context as that of Narkiewicz and Śliwa [13]; see footnote 3.
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Our principal theorems place these last two results in a more general framework.

Theorem 1.2. For every prime p,

ClrZ/pZ⊕ Z/p2Z = 1 +
2p2 − p− 1

2p− 1
.

(We write the constant in the form 1 + · · · to isolate the uninteresting contribution from the
0-stack, which is always cleared one chip at a time.)

Theorem 1.3. For every pair of distinct primes p and q,

ClrZ/pqZ = 3− 1

p
− 1

q
.

Our proofs depend fundamentally on U. Krause’s notion of the cross number of a finite abelian
group [9]. The observation that the cross number of the class group carries information about
factorizations in OK is not novel by any means. Indeed, Krause introduced his invariant in order to
establish a factorization-based characterization of number fields with class groups cyclic of prime
power order! (See the start of §3, and cf. [10], [3].) However, as far as we are aware, this is the
first use of the cross number to investigate “typical elasticities.”

2. Laying the groundwork: Proof sketches for Proposition 1.1 and Theorem B

2.1. Sketch of the proof of Proposition 1.1. If G is a finite abelian group, we let RG denote
the R-vector space of functions from G to R, viewing the elements of RG as vectors of real numbers
indexed by G. For v ∈ RG and g ∈ G, the gth component of v will be denoted v[g]. We can,
and do, identify each move in G-solitaire with the element of RG whose gth component counts the
number of removed chips from the g-stack.

We let LG ⊆ RG denote the collection of legal moves in G-solitaire. Equivalently, LG is the set of
v ∈ RG with nonnegative integer entries, not all zero, satisfying

(a)
∑

g∈G v[g]g = 0 in G, and

(b) whenever w is dominated by v, in the sense that 0 ≤ w[g] ≤ v[g] for each g ∈ G, and∑
g∈G w[g]g = 0, either w = 0 (the zero vector) or w = v.

Since every legal move has length at most DavG, the set LG is finite. List its elements as
v1, . . . ,vm. Define the vector 1 ∈ RG by setting 1[g] = 1 for all g ∈ G. Then

Σ(G;X) is the minimal possible value of n1 + · · ·+ nm

taken over all nonnegative integers n1, . . . , nm satisfying

(3) n1v1 + · · ·+ nmvm = X1.

It will be helpful to renormalize. Setting νi = ni/X, we seek to choose the ni to minimize
∑m

i=1 νi
subject to

(4) ν1v1 + · · ·+ νmvm = 1.

We temporarily forget about the ni and pretend that the problem, from the get-go, was to minimize
the sum of nonnegative real variables ν1, . . . , νm subject only to the constraint (4). This is a linear
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programming problem. Since the vi are nonzero vectors with all entries nonnegative, the feasible
polytope is bounded, and the minimum of

∑m
i=1 νi is attained at a vertex. Call this minimum σ.

Since the vi have rational entries (as does 1), all the vertices of the feasible polytope are rational,
and hence so is σ. Thus, Proposition 1.1 will follow if we prove that ClrG = σ.

If n1, . . . , nm are nonnegative integers satisfying (3), our work in the last paragraph implies that
n1/X + · · ·+ nm/X ≥ σ. Hence, n1 + · · ·+ nm ≥ σX. We conclude that

(5) Σ(G;X) ≥ σX.

To obtain a corresponding upper bound, let ν1, . . . , νm be nonnegative real numbers satisfying (4)
for which

∑m
i=1 νi = σ. Given a large even number X, we put n′

i := ⌊Xνi⌋ for i = 1, . . . ,m. After
performing n′

i copies of the move vi, for i = 1, . . . ,m, the number of leftover chips in each stack
is tallied by the components of the vector

X1− n′
1v1 − · · · − n′

mvm = X1− ((Xν1 − {Xν1})v1 + · · ·+ (Xνm − {Xνm})vm)

= {Xν1}v1 + · · ·+ {Xνm}vm,

where {t} := t − ⌊t⌋ denotes the fractional part of the real number t. Each {Xνi} < 1, and so
the total number of leftover chips is bounded by the total number of chips involved in the moves
v1, . . . , vm — a quantity independent of X. Any bounded number of chips can be swept up in a
bounded number of moves. Hence, for some constant C (depending on G but not on X),

(6) Σ(G;X) ≤ n′
1 + · · ·+ n′

m + C ≤ X(ν1 + · · ·+ νm) + C = σX + C.

Comparing (5) and (6), we conclude that ClrG = σ.

2.2. Sketch of the proof of Theorem B. To avoid becoming entangled in analytic unpleas-
antries, we will be intentionally vague in this section, referring the reader to [13] or [1] for the gory
details. Our objective is to get to the meat of the proof of Theorem B, without choking on the
bone.

Any study of elasticity must begin by recalling the origin story of irreducible factorizations. Let
α be a nonzero, nonunit of OK , and factor (α) into (not necessarily distinct) prime ideals, say

(α) = P1 · · ·Pg.

Any factorization of α into irreducible elements of OK , say

α = π1 · · · πk,

corresponds to a partition of the multiset {P1, . . . , Pg} into multisets Π1, . . . ,Πk, where the ideals
in each Πi multiply to (πi). We observe that. . .

(a) The (classes of the) ideals in Πi multiply to the identity in Cl(K).

(b) No proper subproduct of the ideals in Πi comes out to the identity in Cl(K). (Otherwise,
the complementary subproduct does as well. These two products are principal ideals,
and their generators multiply — after adjusting by a unit — to the allegedly irreducible
element πi.)

Conversely, if Π′
1, . . . ,Π

′
ℓ is any partition of the multiset {P1, . . . , Pg} satisfying conditions (a) and

(b), then α has a factorization into irreducibles of length ℓ. Indeed, (a) allows us to write the
product of the ideals in Π′

i as (π′
i) for some nonunit π′

i ∈ OK while (b) ensures that each π′
i is
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irreducible. Finally, (π′
1 · · · π′

ℓ) = P1 · · ·Pg = (α), so that after multiplying π′
1 (say) by a suitable

unit, we have π′
1 · · · π′

ℓ = α.

The upshot is a concrete description of the length spectrum L(α) in terms of an α-dependent
variant of Cl(K)-solitaire. For each C ∈ Cl(K), we now take the number of chips in the C-pile
as the number of prime ideals from the class C appearing in the factorization of α (with repeated
prime ideal factors counted multiple times). Then L(α) is the set of all k for which the table can
be cleared in k moves.

So something like Cl(K)-solitaire is in the picture. But why does the clearing constant ClrCl(K)
— which came to us from analyzing equal-height games — come into play? To explain this, we
need a bit of analytic number theory.

According to a 1917 theorem of G.H. Hardy and S. Ramanujan [7], asymptotically 100% of natural
numbers n have “about” log log n prime factors. (Here and below, primes and prime ideals are
counted with multiplicity.) More precisely: For each ϵ > 0, the proportion of n ∈ (1, N ] whose
count of prime factors lies between (1− ϵ) log log n and (1+ ϵ) log log n tends to 100%, as N → ∞.

Similar results can be proved in the number field case. For each (fixed) number field K, almost all
principal ideals (α) of OK have about log log |Nα| prime ideal factors. In fact, letting h := #Cl(K)
be the class number of K, almost all (α) have about 1

h
log log |Nα| prime factors from each of

the h ideal classes. The provenance of this last result is harder to trace; a recent reference is [14]
(see Theorem 7 there for a stronger result).

Piecing together the algebra and the analysis: For almost all principal ideals (α), the length
spectrum of α is determined by a variant of Cl(K)-solitaire where the stacks have almost equal
height (each ≈ 1

h
log log |Nα|). This is starting to sound familiar!

When the stacks have precisely the same large (even) height X, we have seen that the minimum
number of clearing moves is asymptotically (Clr Cl(K))X, as X grows. We have not yet said
anything about the maximum number of moves, but this is comparatively straightforward to
analyze. As usual, the 0-stack is cleared in X moves. Every other move involves at least two
chips, which upper bounds the number of moves by X + 1

2
(h − 1)X = h+1

2
X. And this upper

bound is easily achieved: For each C ∈ Cl(K), pair the stacks corresponding to C and its inverse.
Remove one chip at a time from both — if the stack is its own inverse, remove two at a time. This
clears the nonzero stacks in precisely h−1

2
X moves. So in this idealized X-chips/stack scenario,

the ratio of the maximum number of possible moves to the minimum number is asymptotically

(h+ 1)X/2

(Clr Cl(K))X
=

1 +#Cl(K)

2ClrCl(K)
,

matching Theorem B.

To pass from the idealized back to the actual, we apply the reasoning of the last paragraph with
two different values of X: First, the largest even X not exceeding the height of any stack, and
second, the smallest even X at least the height of every stack. Both values of X are almost always
≈ 1

h
log log |Nα|, and so almost always asymptotically equivalent. We conclude (with a little work)

that for almost all (α), we have ρ(α) = supL(α)
inf L(α) ≈ 1+#Cl(K)

2ClrCl(K)
, as asserted in Theorem B.
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3. Charging ahead: The cross number

If D is an integral domain, call π ∈ D primary if π generates a primary ideal of D. Equivalently,
π is a nonunit and for all x, y ∈ D,

π | xy implies π | x or π | yn for some positive integer n.

In 1984, Krause gave the following characterization of number fields whose class groups are cyclic
of prime power order [9].

Theorem C. For each number field K, the following are equivalent:

(i) Cl(K) is cyclic of prime power order,

(ii) there is a positive integer m such that, for all irreducibles π of OK, the element πm factors
as a product of at most m primary elements.

When (ii) holds, the smallest possible value of m is precisely #Cl(K).

To prove Theorem C, Krause associates to each finite abelian group G an invariant he calls the
“cross number.” For each v ∈ RG, define the charge of v as the real number∑

g∈G

v[g]

ord(g)
,

where ord(g) denotes the order of g in G. Then the cross number of G, denoted k(G), is the
maximum charge of a legal move in G-solitaire.

Removing a chip from the 0-stack is a move of charge 1, and so we always have k(G) ≥ 1. The
“heavy lifting” in the proof of Theorem C consists in determining when equality holds.

Proposition 3.1 (see [9, Lemma 2]). Let G be a finite abelian group of order larger than 1. Then
G is cyclic of prime power order if and only if k(G) = 1.

Rather than rehash Krause’s proof of [9] of Theorem C, it will be more germane to call out how
Proposition 3.1 immediately yields a nontrivial result about clearing constants.

Set up G-solitaire with X chips/pile. The heights of the piles in this initial configuration are
recorded by the vector X1, which has charge

(7) X
∑
g∈G

1

ord(g)
.

By Proposition 3.1, when G is cyclic of prime power order, each move depletes the charge of the
configuration by at most 1. So to bring the charge down to 0, the number of moves must be at
least (7). That is,

Σ(G;X) ≥ X
∑
g∈G

1

ord(g)
.

On the other hand, for any group G, the simple strategy of picking off the elements in the g-stack
ord(g)-at a time yields an essentially matching upper bound for Σ(G;X), namely

Σ(G;X) ≤ X
∑
g∈G

1

ord(g)
+ C,
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where C is a constant depending on G but not on X. (The C comes from the fact that X may not
be divisible by every ord(g). In that case, we will need to sweep up a bounded number of chips at
the end.) It follows that

(8) ClrZ/prZ =
∑

g∈Z/prZ

1

ord(g)
= 1 +

r∑
j=1

1

pj
· (pj−1(p− 1)) = 1 + r

p− 1

p
.

This simple proof is also a “proof of concept,” suggesting that a refined understanding of k(G), for
general G, might have important implications for the study of clearing constants. Unfortunately,
k(G) is not so easy to get one’s hands on!

There is at least a fairly straightforward lower bound for k(G), noted already in Krause’s initial
paper [9]: Write G as a direct sum of cyclic groups of prime power order, say G = ⊕k

i=1Z/p
ei
i Z.

Then

(9) k(G) ≥

(
k∑

i=1

peii − 1

peii

)
+

1

ExpG
,

where ExpG is the exponent of G, the least common multiple of the peii . To see (9), let v be
the move involving pe11 − 1 copies of (1, 0, . . . , 0), pe22 − 1 copies of (0, 1, . . . , 0), continuing through
pekk − 1 copies of (0, 0, . . . , 1), and finishing with a single copy of (1, 1, . . . , 1). Then the charge of
v is precisely the right-hand side of (9).

Perhaps surprisingly, in every example we can compute, (9) is an exact equality. It is an open
problem to decide whether or not equality holds universally. We do know equality for several
classes of groups, including . . .

• all abelian p-groups (A. Geroldinger [5]),

• all groups Z/pqZ and Z/pqrZ with p, q, r distinct primes (U. Krause and C. Zahlten; see
[10, Theorems 3 and 4]),

• all groups Z/pmZ⊕Z/pnZ⊕(Z/qZ)s, with p, q distinct primes and m,n, s positive integers
(A. Geroldinger and R. Schneider; see [6, Theorem 1]).

In particular, we have equality in (9) for G = Z/pZ ⊕ Z/p2Z, which will be used in our proof of
Theorem 1.2 below.

4. The clearing constant of Z/pZ⊕ Z/p2Z

4.1. Economy of movement. For every finite abelian group G, there is an easy lower bound
on ClrG in terms of k(G): To clear the table, the X chips in the 0-stack must be removed
one-by-one, while the remaining chips have charge X

∑
g∈G,g ̸=0 1/ord(g). Therefore, Σ(G;X) ≥

X + X
k(G)

∑
g∈G, g ̸=0 1/ord(g), and

(10) ClrG ≥ 1 +
1

k(G)

∑
g∈G, g ̸=0

1

ord(g)
.

When equality holds in (10), we call the group G economical. For example, we saw in the
previous section that the groups Z/prZ are all economical. Allen and Pleasants proved, more
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generally, that each group of the form (Z/prZ)s is economical (this is implicit in [1, Theorem 5]).
Equivalently (by a short computation),

(11) Clr (Z/prZ)s = 1 +
prs(1− p−s)

s(pr − 1) + 1
· 1− p−(s−1)r

1− p−(s−1)
,

where we take 1−p−(s−1)r

1−p−(s−1) = r when s = 1.

We will prove our Theorem 1.2 by showing that each G = Z/pZ⊕ Z/p2Z is also economical. By
the results of §3,

k(G) =
p− 1

p
+

p2 − 1

p2
+

1

p2
=

2p− 1

p
.

Since G contains p2 − 1 elements of order p and p3 − p2 elements of order p2, we have that

1

k(G)

∑
g∈G, g ̸=0

1

ord(g)
=

p

2p− 1

(
p2 − 1

p
+

p3 − p2

p2

)
=

2p2 − p− 1

2p− 1
.

Thus, the right-hand side of (10) matches with the value for ClrG claimed in Theorem 1.2. So
proving G economical will prove Theorem 1.2.

4.2. Do you know it when you see it? In this section, we develop a criterion allowing us to
show efficiently that groups are economical (Proposition 4.2).

Recall that LG denotes the set of moves in G-solitaire, thought of as a subset of RG. We let
Lmax

G ⊆ LG denote the set of moves of maximum charge k(G). We define χ ∈ RG by χ[0] = 0 and
χ[g] = 1 for all g ∈ G, g ̸= 0. The following is “version 0” of our criterion.

Lemma 4.1. G is economical if χ belongs to the nonnegative span of Lmax
G .

Proof. Let v1, . . . ,vm be a list of the moves in Lmax
G , and suppose that

(12) χ = c1v1 + · · ·+ cmvm.

Starting from stacks of size X in G-solitaire, clear the X chips in the 0-stack first. Then perform
the move v1 ⌊c1X⌋ times, the move v2 ⌊c2X⌋ times, etc. This leaves only a bounded number of
chips, which can be dealt with in a bounded number of moves (compare with the arguments of
§2.1). Hence, for some constant C depending only on G,

(13) Σ(G;X) ≤ X + (c1 + · · ·+ cm)X + C.

Comparing the charge on the two sides of (12), we find that∑
g∈G, g ̸=0

1

ord(g)
= k(G)(c1 + · · ·+ cm).

Hence,

c1 + · · ·+ cm =
1

k(G)

∑
g∈G,g ̸=0

1

ord(g)
.
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Substituting this expression for c1 + · · ·+ cm into (13), dividing by X and sending X → ∞ shows
that

ClrG ≤ 1 +
1

k(G)

∑
g∈G, g ̸=0

1

ord(g)
.

However, (10) tells us that the left-hand side is always at least as large as the right. So it must
be that equality holds, proving G is economical. □

Lemma 4.1 is generally too cumbersome to apply directly, in part because the vectors involved
live in a space of dimension equal to the order of G, which can be quite large. To cut down the
dimension, we bring in the action of the automorphism group Aut(G) of G.

Say that g, g′ ∈ G are automorphism-equivalent if there is a σ ∈ Aut(G) with σ(g) = g′. We
define G̃ as the quotient set corresponding to this equivalence relation. We refer to the elements
of G̃ as automorphism types, denoting the type of g ∈ G by g̃. For each v ∈ RG, the profile

of v is the vector ṽ ∈ RG̃ with

ṽ[g̃] =
∑

g′∈G, g′∼g

v[g′] for all g ∈ G.

In words, ṽ is determined from v by “grouping together contributions from automorphism-

equivalent elements.” We let L̃max
G denote the collection of profiles of moves of maximum charge.

Our workhorse criterion is the “tilde-ed” version of Lemma 4.1 (cf. [1, pp. 76–77]).

Proposition 4.2. G is economical if χ̃ belongs to the nonnegative span of L̃max
G .

Before giving the proof, we illustrate Proposition 4.2 with a toy example, proving that G =
(Z/pZ)s is economical for every choice of prime p and positive integer s. (This is the special
case r = 1 of the earlier-quoted result of Allen–Pleasants.) Every two nonzero elements of the
group (Z/pZ)s are automorphism-equivalent, as any two nonzero vectors in the Z/pZ-vector space
(Z/pZ)s can be interchanged by an invertible linear transformation. So there is precisely one

nontrivial automorphism class, and G̃ ∼= Z/2Z. We identify RG̃ with R2, with the nontrivial
automorphism type indexing the first component. Then χ̃ =

[
ps − 1, 0

]
. Now let v be the move

in G-solitaire involving p− 1 copies of each of (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1), and one
copy of (1, 1, . . . , 1). Then ṽ =

[
s(p− 1) + 1, 0

]
. Clearly, χ̃ is a positive real multiple of ṽ. Hence,

G is economical by Proposition 4.2.

We require one more piece of notation before explaining the proof of Proposition 4.2. If v ∈ RG

and σ ∈ Aut(G), we define vσ ∈ RG by

vσ[g] = v[σ(g)] for all g ∈ G.

Proof of Proposition 4.2. By Lemma 4.1, it suffices to show that if χ̃ lies in the nonnegative span

of L̃max
G , then χ belongs to the nonnegative span of Lmax

G . As before, let v1, . . . ,vm be a list of the
moves in Lmax

G . Suppose there are nonnegative c1, . . . , cm with

c1ṽ1 + · · ·+ cmṽm = χ̃.

We claim that

(14)
∑
σ

(c1v
σ
1 + · · ·+ cmv

σ
m) = (#Aut(G))χ,
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where the sum is over all σ ∈ Aut(G). Since v and vσ share the same charge (for each v ∈ RG

and σ ∈ Aut(G)), dividing (14) through by #Aut(G) exhibits χ as a nonnegative combination of
elements of Lmax

G .

The 0-components of the left and right-hand sides of (14) both vanish. Now let g ̸= 0. The gth
component of the left of (14) is given by∑

σ

(c1v
σ
1 [g] + · · ·+ cmv

σ
m[g]) =

∑
σ

(c1v1[σ(g)] + · · ·+ cmvm[σ(g)])

=
∑
σ

(c1v1 + · · ·+ cmvm)[σ(g)].

As σ runs through Aut(G), the elements σ(g) run #Aut(G)/#Orb(g) times through the auto-
morphism orbit Orb(g) of g. Also, χ̃[g̃] =

∑
g′∼g 1 = #Orb(g). Therefore,∑

σ

(c1v1 + · · ·+ cmvm)[σ(g)] = (c1v1 + · · ·+ cmvm)
:

[g̃] · #Aut(G)

#Orb(g)

= χ̃(g̃) · #Aut(G)

#Orb(g)

= #Orb(g) · #Aut(G)

#Orb(g)

= #Aut(G),

which agrees with the gth component on the right of (14). □

4.3. Application to the proof of Theorem 1.2. Throughout this section, G = Z/pZ⊕Z/p2Z
for a prime p. The following lemma determines the automorphism orbits of G.

Lemma 4.3. Let p be a prime. There are three automorphism orbits on G:

(i) elements of order p of the form (0, pv), where v ̸≡ 0 (mod p),

(ii) elements of order p of the form (u, pv), where u ̸≡ 0 (mod p), v is arbitrary,

(iii) elements of order p2, i.e., of the form (u, v) with u arbitrary, v ̸≡ 0 (mod p).

Proof. It is straightforward to check that each nonzero element of G is described by exactly
one of (i)–(iii). Next, order considerations show that no element in (i) or (ii) is carried by an
automorphism to one described by (iii). Furthermore, nothing in (i) is automorphism-equivalent
to something in (ii): The elements in (i) belong to pG while those in (ii) do not, and belonging to
pG is preserved under automorphism.

It remains to show that for each of (i)–(iii), all elements of that form are automorphism-equivalent.
This is easy for (i): If v, v′ ̸≡ 0 (mod p), there is an integer r ̸≡ 0 (mod p) with rv ≡ v′ (mod p).
“Multiply by r in the second component” is an automorphism of G carrying (0, pv) to (0, pv′).
(Here we have noted that rv ≡ v′ (mod p) implies rpv ≡ pv′ (mod p2).)

We turn now to (ii): If u ̸≡ 0 (mod p), we can choose r ∈ Z with ru ≡ 1 (mod p). Then “multiply
by r in the first component” takes (u, pv) to (1, pv). If v ≡ 0 (mod p), then (1, pv) = (1, 0). If v ̸≡ 0
(mod p), we can choose r′ ∈ Z with r′v ≡ 1 (mod p); in that case, “multiply by r′ in the second
component” takes (1, pv) to (1, p). Hence: To handle (ii), it suffices to show that (1, 0) and (1, p)
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are equivalent. An explicit automorphism taking (1, 0) to (1, p) is given by (x, y) → (x, px + y).
(Note that x is well-defined mod p, so that px is well-defined mod p2.)

Finally, we deal with (iii). Scaling the second component will take any element in (iii) to the form
(u, 1). Now scaling in the first component, we see that any two elements of the form (u, 1) with
u ̸≡ 0 (mod p) are automorphism-equivalent. This reduces the problem to showing that (0, 1)
and (1, 1) are equivalent. But the map (x, y) 7→ (x− y, y) is an automorphism of G carrying (1, 1)
to (0, 1). (Here y ∈ Z/p2Z is interpreted in Z/pZ by reduction mod p, which is well-defined as p
divides p2.) □

Remark. Our proof of Lemma 4.3 is self-contained but ad hoc. One can also give a more conceptual
argument, based on an explicit description of the automorphisms of G (see, e.g., [8]).

We now identify RG̃ with R4, indexing the first three components by automorphism types (i)—
(iii), respectively, and indexing the fourth component by the type of 0. Straightforward counting
arguments show that

χ̃ = [p− 1, p2 − p, p3 − p2, 0].

Theorem 1.2 is now within easy reach.

Proof of Theorem 1.2. Let v1,v2,v3 be the following G-solitaire moves:

v1 : discard (1, 0) p− 1 times, (0, p) p− 1 times, (0, 1) p− 1 times, (1, 1) once,

v2 : discard (1, 0) p− 1 times, (−1, p) p− 1 times, (0, p) once,

v3 : discard (1, 0) p− 1 times, (0, 1) p2 − 1 times, (1, 1) once.

These are indeed legal moves (a straightforward check), and each has charge 2− 1
p
, which we know

from §3 to be the cross number of G. Moreover,

ṽ1 = [p− 1, p− 1, p, 0],

ṽ2 = [1, 2(p− 1), 0, 0], and

ṽ3 = [0, p− 1, p2, 0].

Solving the corresponding system of three equations in three variables, we find that c1ṽ1 + c2ṽ2 +
c3ṽ3 = χ̃ for

c1 =
2p2 − 3p

2p2 − 3p+ 1
,

c2 =
1

2p− 1
,

c3 =
2p3 − 5p2 + 2p+ 2

2p2 − 3p+ 1
.

As p ≥ 2, all of c1, c2, c3 > 0, and so the criterion of Proposition 4.2 is satisfied. □

Remark. Since we are primarily interested in positive results in this paper, we have not bothered
about the converses of Lemma 4.1 and Proposition 4.2. But it is not so hard to show that those also
hold. Here is an interesting application of this: One can verify computationally that Z/2Z⊕Z/23Z
fails the criterion of Proposition 4.2. Thus, Z/2Z ⊕ Z/23Z is not economical! In particular, the
above method of proof will not determine ClrZ/pZ⊕ Z/p3Z.
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It would seem an interesting problem to classify, even conjecturally, economical groups.

5. The clearing constant of Z/pqZ

Throughout this section, p and q denote distinct primes, and G = Z/pqZ. We prove Theorem 1.3
in two parts, by establishing corresponding upper and lower bounds on ClrG. We start with the
upper bound argument, which is pleasingly explicit.

Proof that ClrG ≤ 3− 1
p
− 1

q
. For each i = 1, 2, . . . , p− 1 and j = 1, 2, . . . , q− 1, we introduce the

move

vi,j : discard iq p− 1 times, jp q − 1 times, and iq + jp once.

Let’s check that each vi,j is a valid move. It is straightforward to compute that the removed chips
sum to 0 — what we have to worry about is that a proper subcollection may also sum to 0. In
that case, after perhaps swapping with the complementary subcollection, we can assume iq + jp
does not appear in the subcollection. Then iq appears a times and jp occurs b times, where a, b
do not both vanish, 0 ≤ a < p, 0 ≤ b < q, and

a(iq) + b(jp) ≡ 0 (mod pq).

Looking at this equation modulo p, we see that p divides a. Similarly, looking mod q shows that
q divides b. But now the ranges of a and b force a = b = 0, a contradiction.

Since iq+ jp is nonzero modulo both p and q, it represents an element of G of order pq. Therefore,
each vi,j has charge

p− 1

p
+

q − 1

q
+

1

pq
.

We now clump together all (p− 1)(q − 1) moves of the vi,j. When all these moves are performed
one-after-another, we call it a run of the Fundamental Macro.

As i runs over the integers 0 < i < p, the iq run over all the elements of order p in G, exactly
once. Hence, a prescribed element of order p is removed (p− 1)(q− 1) times by a single run of the
Fundamental Macro. Similarly, any given element of order q is removed (p− 1)(q − 1) times.

As i, j run over the integers 0 < i < p and 0 < j < q, the integers iq+ jp run over the elements of
order pq in Z/pqZ, each exactly once. (Those who have taught elementary number theory recently
may remember this argument as a way to count units in the ring Z/pqZ; see for instance the proof
of Theorem 3.7 in [11].) Hence, any given element of order pq is removed precisely once in a run
of the Fundamental Macro.

Now assume — temporarily! — that X is divisible by pq(p − 1)(q − 1). Run the Fundamental
Macro X

(p−1)(q−1)
times. This clears the stacks corresponding to elements of order p and elements

of order q but leaves the 0-stack untouched and leaves X − X
(p−1)(q−1)

chips in each order pq stack.

We clear each of the (p− 1)(q − 1) order pq stacks pq chips at a time, and then clear the 0-stack
one chip at a time. In total, the number of moves involved is

X

(p− 1)(q − 1)
· (p− 1)(q − 1)︸ ︷︷ ︸

from running the Fun. Macro

+
X −X/(p− 1)(q − 1)

pq
· (p− 1)(q − 1)︸ ︷︷ ︸

from the order pq stacks

+ X︸︷︷︸
0-stack

.
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Applying some elbow grease, this simplifies to

X

(
3− 1

p
− 1

q

)
.

In general, let X ′ be the largest multiple of pq(p − 1)(q − 1) not exceeding X. Carrying out the
procedure of the last paragraph, we clear the top X ′ elements of each stack in X ′(3−1/p−1/q) ≤
X(3−1/p−1/q) moves. Afterwards, only a bounded number of chips remain to be swept up, and
hence Σ(G;X) ≤ X(3− 1/p− 1/q) + C, for some constant C. It follows that ClrG ≤ 3− 1

p
− 1

q
,

as claimed. □

Obtaining the corresponding lower bound on ClrG requires some preparation. The following
fundamental result on Davenport constants was alluded to in the introduction.

Lemma 5.1. Let H be an abelian group of order n. Then

DavH ≤ n,

with equality if H is cyclic.

Proof. Let h1, h2, . . . , hn be any n-element sequence from H. Consider the (n+ 1)-element list

0, h1, h1 + h2, . . . , h1 + h2 + · · ·+ hn.

As #H = n, two elements on this list must coincide. Thus, there are integers 0 ≤ i < j ≤ n with
h1 + · · ·+ hi = h1 + · · ·+ hj. But then

hi+1 + · · ·+ hj = 0.

This proves that DavH ≤ n. If H is cyclic with generator h, then h, h, h, . . . , h (n − 1 times) is
an (n− 1)-element sequence in H with no zero-sum subsequence. Thus, DavH cannot be smaller
than n, forcing DavH = n. □

Lemma 5.2. If v ∈ LG removes exactly i chips of order q, then v has charge at most

(15) 1 +
p− 1

pq
i.

In particular, if no chips of order q are removed, then v has charge at most 1.

Proof. If v has charge at most 1, the claimed upper bound is obvious.

Thus, we may assume that every chip removed by v is nonzero. We may also assume that i < q.
Indeed, suppose i ≥ q, and let g1, . . . , gi be the corresponding order q elements of G. Since G is
cyclic of order pq, every element of order q belongs to the q-element subgroup H = pG of G. By
Lemma 5.1, there is a subsequence of g1, . . . , gq summing to 0 in pG, and hence to 0 in G. Since
v is a legal move, i = q, and the q chips of order q are the only chips removed by v, so that v has
charge q/q = 1.

Let’s say v removes i + j + k chips in total, where i is as in the lemma statement, and j and k
count chips of orders p and pq, respectively. We list the corresponding elements of G as

(16) a1, . . . , ai, b1, . . . , bj, c1, . . . , ck.
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Then v has charge

(17)
i

q
+

j

p
+

k

pq
.

The argument of the last paragraph, showing we may assume i < q, also lets us assume that j < p.

If the upper bound of the lemma fails, comparing (15) and (17) shows that

(18) k > q(p− 1− j) + q − i.

We assume (18) holds and arrive at contradiction.

Break c1, . . . , cq(p−1−j) into p − 1 − j consecutive blocks of length q. Applying Lemma 5.1 with
H = G/qG, each of the p − 1 − j blocks has a subsequence summing to an element of qG. We
label these subsequence sums as s1, . . . , sp−1−j. A similar application of Lemma 5.1 shows that
the q-term sequence

a1, . . . , ai, cq(p−1−j)+1, . . . , cq(p−1−j)+q−i

has a subsequence whose sum, call it s, belongs to qG.

Now consider the sequence

(19) b1, . . . bj, s1, . . . , sp−1−j, s.

By construction, every subsequence sum of (19) is also a subsequence sum of

(20) a1, . . . , ai, b1, . . . , bj, c1, . . . , cq(p−1−j)+q−i.

We call upon Lemma 5.1 one final time: The sequence (19) contains a subsequence summing to 0,
since the p terms of (19) all belong to the p-element group qG. Hence, the i+j+(q(p−1−j)+q−i)-
term sequence (20) also has 0 as a subsequence sum. But then the legality of v forces (20) to
account for all of the chips removed by v, contradicting (16) and (18). □

Proof that ClrG ≥ 3− 1
p
− 1

q
. It suffices to show that

(21) Σ(G;X) ≥ X

(
3− 1

p
− 1

q

)
for all (even) X.

Start with any sequence of moves clearing the stacks of height X. We may assume without loss
of generality that the moves of charge larger than 1 are performed first. Each of those involves i
elements of order q for some integer i with 0 < i < q. We let ni denote the number of moves of
charge larger than 1 involving precisely i elements of order q.

The charge of our initial configuration is

(22) T := X
∑
g∈G

1

ord(g)
= X

(
1 +

p− 1

p
+

q − 1

q
+

(p− 1)(q − 1)

pq

)
.

After the n1+ · · ·+nq−1 moves of charge larger than 1 are performed, the charge of the remaining
configuration is, by Lemma 5.2, at least

T −
q−1∑
i=1

ni

(
1 +

p− 1

pq
i

)
.
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All the remaining chips must be cleared using moves of charge at most 1, and so the last expression
also serves as a lower bound on the number of remaining moves. Therefore,

Σ(G;X) ≥
q−1∑
i=1

ni +

(
T −

q−1∑
i=1

ni

(
1 +

p− 1

pq
i

))

= T − p− 1

pq

q−1∑
i=1

ini

≥ T − p− 1

pq
·X(q − 1)

= T −X
(p− 1)(q − 1)

pq
.

(In going from the second line to the third, we use that
∑q−1

i=1 ini does not exceed the total number
of chips of order q, which is X(q− 1).) Referring back to our earlier expression (22) for T , we see
that the final expression in the last display is precisely

X

(
1 +

p− 1

p
+

q − 1

q

)
= X

(
3− 1

p
− 1

q

)
.

This completes the proof of (21) as well as the proof of Theorem 1.3. □
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ChatGPT 5.2 was a helpful conversation partner throughout. In particular it played a crucial
role in our proof that G = Z/2Z⊕ Z/8Z is not economical, by generating efficient gp/PARI code
(human-checked for correctness!) efficiently enumerating all moves in G-solitaire.
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