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Abstract

We call a finite set of positive integers balanced if all its subsets have integer mean.
For a positive integer N , let M(N) be the cardinality of the largest balanced set
all of whose elements are less than or equal to N , and let S(N) be the cardinality
of the balanced set with elements less than or equal to N that has maximal sum.
We study properties of balanced sets and answer questions regarding what positive
integers N satisfy M(N) = S(N).

1. Introduction

We say a finite set A of positive integers is balanced if, for any subset B ⊆ A, the

arithmetic mean of the elements of B is an integer, i.e.,

1

|B|
∑
i∈B

i ∈ Z.

The definition was introduced in problem 2 of the 31st Mexican Mathematical

Olympiad held in 2017. The original problem asked to find the largest sum a

balanced set whose maximal element is 2017 can have. The answer, 12859, is

achieved with a balanced set with maximal number of elements less than or equal

to 2017; i.e., it occurs with the set {2017, 1957, 1897, 1837, 1777, 1717, 1657},
which has 7 elements, and there are no balanced sets of 8 elements with maximal

element at most 2017. I was a grader for this problem and some students would

find the largest balanced set and assumed it had maximal sum, without proving

it. To explain why these students should not get full credit, I gave the example of

considering changing the number 2017 for 3000. With 3000, there is a balanced set

with 8 elements, namely {3000, 2580, 2160, 1740, 1320, 980, 480, 60}, but it has a

smaller sum than the balanced set with 7 elements {3000, 2940, 2880, 2820, 2760,

2700, 2640}. Therefore, having a larger number of elements does not guarantee

having a larger sum (even when optimizing for largest possible elements). This led

me to think of the question of which N satisfy that the largest balanced set with
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elements less than or equal to N is the one with the largest sum.

For a positive integer N , let M(N) be the size of the largest balanced set all of

whose elements are at most N . Let S(N) be the size of the set with maximal sum

among balanced sets all of whose elements are at most N . Our question is, for which

N is M(N) = S(N)? For example M(2017) = S(2017), yet M(3000) 6= S(3000).

Using a computer, we can verify that if N ≤ 1000000, then M(N) = S(N) for

1 ≤ N ≤ 18,

31 ≤ N ≤ 48,

85 ≤ N ≤ 300,

571 ≤ N ≤ 2940,

18481 ≤ N ≤ 22680,

54181 ≤ N ≤ 304920.

If we let L(n) be the least common multiple of {1, 2, . . . , n}, then we can see

that 18 = 3L(3), 48 = 4L(4), 300 = 5L(5), 2940 = 7L(7), 22680 = 9L(9),

and 304920 = 11L(11). In other words, the upper bounds on these intervals

are all of the form mL(m). If we verify using a computer for which m ≤ 800

is M(mL(m)) = S(mL(m)), we find that it works for all primes less than or equal

to 800, along with 4, 9, and 121. This suggests that M(pL(p)) = S(pL(p)) for any

prime p. Indeed, we can prove that.

Theorem 1. Let p be prime. ThenM(pL(p)) = S(pL(p)). Furthermore,M(pL(p)+

1) 6= S(pL(p) + 1).

The computational evidence also suggests that if m > 121 with M(mL(m)) =

S(mL(m)), then m is prime. The following theorem partially proves it, by showing

that if M(mL(m)) = N(mL(m), then m is a prime power.

Theorem 2. If m is not a prime power, then M(mL(m)) 6= S(mL(m)).

Attacking prime powers is harder. However, with some nice work [1, 4] on

large gaps between consecutive primes, we can prove that for large enough m, if

S(mL(m)) = M(mL(m)), then m cannot be a prime power with exponent at least

3.

Theorem 3. For m ≥ 1010
15

of the form qk for a prime q and an exponent k ≥ 3,

then M(mL(m)) 6= S(mL(m)).

Using results on large prime gaps [2] assuming the Generalized Riemann Hypoth-

esis (GRH), we can prove

Theorem 4. Assuming GRH, if m = qk for a prime q and exponent k ≥ 3, then

M(mL(m)) 6= S(mL(m)).
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That large squares of primes fail is harder to prove. The reason is that our proofs

above depend on the existence of a prime p ∈ [x − ckx1−1/k, x] for a constant ck
depending on k. However, for squares, we would need a prime in the interval [x−
c2
√
x, x]. The best unconditional result is due to Baker, Harman, and Pintz [1] who

proved that for large enough x there is a prime in the interval [x− x21/40, x], while

the best result under GRH, proved by Carneiro, Milinovich, and Soundararajan [2],

is that for x ≥ 4 there is a prime in the interval [x − 22
25

√
x log x, x]. To remove

squares of primes we would need stronger conjectures regarding prime gaps. In

particular, Crámer [3] conjectured that for large enough x there is a prime in the

interval [x − C log2 x, x], for some constant C. This assumption would be enough

to prove that for large p, M(p2L(p2)) 6= S(p2L(p2)).

The above results describe what happens at the right endpoints of the intervals.

The left endpoints are harder to estimate, but we can do enough to prove results

about the natural density of the set of N for which M(N) = S(N). In fact, we can

prove the density does not exist because of the following theorem:

Theorem 5. The set of N for which M(N) = S(N) has upper density equal to 1,

and it has lower density equal to 0.

2. Balanced sets with maximal element N

An important property that balanced sets A with n elements satisfy is that the

elements of A must all be congruent modulo L(n− 1). The following lemma proves

this and evaluates the maximal sum a balanced set with m elements can have if all

the elements are at most N .

Lemma 1. For an integer m ≥ 3, a balanced set A with m elements must satisfy

that all of its elements are congruent modulo L(m− 1). Furthermore, the balanced

set with m elements less than or equal to N whose sum is maximal is {N,N−L(m−
1), N − 2L(m− 1), . . . , N − (m− 1)L(m− 1)}. The maximal sum is

mN − m(m− 1)

2
L(m− 1).

Proof. Let A = {a1, a2, . . . , am} be a balanced set with m elements. Let k ≤ m−1.

Then ai1 + ai2 + . . . + aik−1
+ aik ≡ ai1 + ai2 + . . . + aik−1

+ aik+1
mod k for any

indices i1, i2, . . . , ik, ik+1. Therefore aik ≡ aik+1
mod k. Since it is true for any

indices, then a1 ≡ a2 ≡ . . . ≡ am mod k. Because this is true for all k ≤ m−1, then

the elements are congruent modulo the least common multiple of {1, 2, . . . ,m− 1},
which is L(m − 1). The set with elements less than or equal to N that has its

elements as large as possible and congruent modulo L(m− 1) is

{N,N − L(m− 1), N − 2L(m− 1), . . . , N − (m− 1)L(m− 1)}.
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We need to show this set is balanced. Since the elements are congruent modulo

L(m−1) than for any proper subset, the arithmetic mean is an integer. To conclude,

we need to show the arithmetic mean of the set itself is an integer. The mean is

N − m(m− 1)

2m
L(m− 1) = N − m− 1

2
L(m− 1).

Since L(m− 1) is even for m ≥ 3, the arithmetic mean is an integer.

The next lemma allows us to determine the value of M(N).

Lemma 2. Let m ≥ 3 be a positive integer. Then M(N) = m if and only if

(m− 1)L(m− 1) + 1 ≤ N ≤ mL(m).

Proof. If N ≤ (m−1)L(m−1), then we cannot have a balanced set with m elements

since the m elements would need to be congruent modulo L(m− 1), but there are

not m elements congruent to L(m− 1) less than or equal to (m− 1)L(m− 1). For

N ≥ (m− 1)L(m− 1) + 1, the set {N,N −L(m− 1), . . . , N − (m− 1)L(m− 1)} is

balanced. Therefore M(N) ≥ m. For N ≤ mL(m), we cannot have a balanced set

with m+ 1 elements. Therefore M(N) ≤ m. Hence M(N) = m.

We can also prove that M and S are monotone increasing functions.

Lemma 3. The functions M and S are monotone increasing.

Proof. That M is monotone increasing follows immediately from Lemma 2. For S,

suppose s = S(N + 1) < S(N) = m. Since s < m and S(N) = m, we have from

Lemma 1

mN − m(m− 1)

2
L(m− 1) ≥ sN − s(s− 1)

2
L(s− 1).

But, since m > s, we have

m(N + 1)− m(m− 1)

2
L(m− 1) > s(N + 1)− s(s− 1)

2
L(s− 1).

Therefore S(N + 1) 6= s. Contradiction!

3. Proving theorems involving N = mL(m)

The first theorem to prove concerns showing M(pL(p)) = N(pL(p)).

Proof of Theorem 1. First we will prove M(pL(p)) = S(pL(p)). Consider balanced

sets whose maximal element is at most pL(p). By Lemma 2, we have M(pL(p)) = p.
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By Lemma 1, the maximal sum of a balanced set with p elements less than or equal

to pL(p) is

p2L(p)− p(p− 1)

2
L(p− 1).

Since p is prime, L(p− 1) = L(p)/p. Therefore, the sum is

p2L(p)− p− 1

2
L(p) = pL(p)

(
p− 1

2
+

1

2p

)
> pL(p)(p− 1).

A balanced set with less than p elements less than or equal to pL(p) has sum smaller

than pL(p)(p− 1). Therefore, M(pL(p)) = S(pL(p)).

Now, let us prove M(pL(p) + 1) > S(pL(p) + 1). By Lemma 2, M(pL(p) + 1) =

p+ 1. By Lemma 1, the maximal sum of a balanced set with p+ 1 elements is

(p+ 1)(pL(p) + 1)− p(p+ 1)

2
L(p). (1)

The maximal sum of a balanced set with p elements is

p(pL(p) + 1)− p(p− 1)

2
L(p− 1). (2)

Using that L(p− 1) = L(p)/p for p prime, subtracting (1) from (2) yields

p(p+ 1)

2
L(p)− p(p− 1)

2p
L(p)− pL(p)− 1.

But, since p ≥ 3, we have

pL(p)

2

(
p− 2 +

1

p

)
− 1 >

pL(p)

2
− 1 > 0.

Therefore, S(pL(p) + 1) ≤ p < p+ 1 = M(pL(p) + 1).

The next theorem to prove concerns showing M(mL(m)) 6= S(mL(m)) when m

is not a prime power.

Proof of Theorem 2. By Lemma 2, we have M(mL(m)) = m. We want to show

S(mL(m)) < m. Let p be the largest prime less than or equal to m. Then

L(p− 1) =
L(p)

p
≤ L(m)

p
.

By Bertrand’s postulate [7, Theorem 8, p. 137], there is a prime between m
2 + 1

and m. Therefore, p satisfies m
2 + 1 ≤ p ≤ m− 1.
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Since m is not a power of a prime, L(m − 1) = L(m). Now, by Lemma 1, we

have that the balanced set with maximal sum with m elements less than or equal

to mL(m) has sum

m2L(m)− m(m− 1)

2
L(m− 1) = m2L(m)− m(m− 1)

2
L(m) = L(m)

(
m2 +m

2

)
,

(3)

while the balanced set of maximal sum with p elements less than or equal to mL(m)

has sum

pmL(m)− p(p− 1)

2
L(p− 1) ≥ pmL(m)− p(p− 1)

2p
L(m) = pmL(m)− p− 1

2
L(m).

(4)

Since mL(m) < L(m) for m ≥ 2, the right side of (4) is increasing with p; therefore

it is minimal when p is minimal. In particular, the maximal sum of a balanced set

with p elements less than or equal to mL(m) is greater than(m
2

+ 1
)
mL(m)−

m
2 + 1− 1

2
L(m) = L(m)

(
m2

2
+m− m

4

)
> L(m)

(
m2

2
+
m

2

)
.

But this is greater than the sum with m elements; therefore S(mL(m)) < m.

To prove results on prime powers, we will need better bounds on gaps of primes

than Bertrand’s postulate. Dudek [4] has the following nice result about the exis-

tence of primes between cubes.

Theorem 6. For m ≥ ee33.3 , there exists a prime p such that m3 ≤ p < m3 + 3m2.

In particular, there is a prime p such that

m3 < p < (m+ 1)3.

For our proof we actually need the slightly tighter bound m3 − 1
3m

2 < p < m3.

The following lemma can be proved by following the steps performed by Dudek

to prove Theorem 6. We will not include the proof, as it is a straightforward

adaptation.

Lemma 4. For all m ≥ 1010
15

there is a prime p such that

m3 − 1

3
m2 < p < m3.

We are now ready to prove that for large enoughm, we cannot haveM(mL(m)) =

S(mL(m) if m is a prime power with exponent greater than or equal to 3.

Proof of Theorem 3. We need only show S(mL(m)) < m. First, note that L(m −
1) = L(m)/q. Now, let p be the largest prime less than or equal to m. By Lemma
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4, p > m− 1
3m

2/3. By Lemma 1, we have that the balanced set of m elements less

than or equal to mL(m) with maximal sum has sum

m2L(m)− m(m− 1)

2
L(m− 1) = m2L(m)− m(m− 1)

2q
L(m), (5)

while the one with p elements has sum

pmL(m)− p(p− 1)

2
L(p− 1) ≥ pmL(m)− p(p− 1)

2qp
L(m) = pmL(m)− p− 1

2q
L(m),

(6)

because L(p− 1) = L(p)
p ≤ L(m−1)

p = L(m)
pq .

Subtracting (5) from (6) yields that the difference of these two sums is at least

L(m)

2q

(
2qpm− p+ 1− 2qm2 +m2 −m

)
.

Since 2qm > 0 the expression is increasing with p, so using the bound p > m− 1
3m

2/3

yields the bound

L(m)

2q

(
−2q

3
m5/3 +

1

3
m2/3 + 1 +m2 − 2m

)
.

Since k ≥ 3, then q = m1/k ≤ m1/3. Therefore, the difference is at least

L(m)

2q

(
1

3
m2 +

1

3
m2/3 + 1− 2m

)
.

This last expression is positive for m ≥ 6.

It would be great to prove the above for all m ≥ 3 and to classify the primes p

such that M(p2L(p2)) = S(p2L(p2)), but this is hard. One thing we can do is prove

the above for m ≥ 3 assuming GRH, which is Theorem 4, and we can prove that

for large enough p, M(p2L(p2)) 6= S(p2L(p2)) assuming Crámer’s conjecture.

Proof of Theorem 4. From the proof of Theorem 3 we see that we need only show

that there is a prime p in the interval [m− 1
3m

2/3,m]. From Carneiro, Mininovich,

and Soundararajan [2, Theorem 5] we know that assuming GRH, for m ≥ 4, there

is a prime in the interval [m,m+ 22
25

√
m logm]. This implies that for m ≥ 8.1×1011,

there is a prime between m− 1
3m

2/3 and m. We can verify with a computer program1

that for m ≥ 223, there is always a prime between m− 1
3m

2/3 and m. Since we had

checked all m ≤ 800 with a computer and the only non-primes were 4, 9, and 121.

The proof follows.
1The computer program would do the following. Start with a = 8.1 × 1011, then compute

b = (1/3)a2/3. Find the first prime p above a− b. If it is smaller than or equal to a, then we have
a prime in the interval. Otherwise you fail. Now let a = p and repeat the process until it fails,
which it does when a = 211.
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4. Upper and lower density bounds

Let A be the set of all N such that M(N) = S(N). That is,

A = {N ∈ N |M(N) = S(N)}.

Let A(x) = {a ≤ x | a ∈ A} be the counting function of A. The upper density of A

is

δ+ = lim sup
x→∞

A(x)

x
,

and the lower density is

δ− = lim inf
x→∞

A(x)

x
.

To be able to prove our results about density, we will need the following lemma

about an interval I where M(N) = S(N) for all N ∈ I.

Lemma 5. Suppose q < p are consecutive primes for which there is no prime power

in the interval (q, p). Let k = p− q.

1. For N such that

pL(p) ≥ N > max

{(
p− 1

2

)
L(p− 1),

L(p)(p2 − p− q + 1)

2pk

}
,

we have M(N) = S(N).

2. If
L(p)(p2 − p− q + 1)

2pk
>

(
p− 1

2

)
L(p− 1),

for N satisfying

qL(q) + 1 ≤ N <
L(p)(p2 − p− q + 1)

2pk
,

we have M(N) 6= S(N).

Proof. For the first part, note that
(
p− 1

2

)
L(p − 1) ≥ (p − 1)L(p − 1) + 1 since

p ≥ 3. Since pL(p) ≥ N ≥ (p − 1)L(p − 1) + 1, then M(N) = p. Therefore, for

N , there exists a balanced set with p elements. Since there are no prime powers

between q and p, we have

L(q) = L(q + 1) = . . . = L(p− 1) =
L(p)

p
.

Suppose q+ 1 ≤ m ≤ p. The maximal sum for a balanced set with m elements less

than or equal to N is

mN−m(m− 1)

2
L(m−1) = mN−m(m− 1)

2
L(p−1) = mN−m(m− 1)

2p
L(p). (7)
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Since p and N are fixed, then (7) is increasing if

N >
2m− 1

2p
L(p).

Since m ≤ p and N >
(
p− 1

2

)
L(p − 1) = 2p−1

2p L(p), then (7) is increasing. That

means that its maximal sum comes when m = p. Therefore, for S(N) 6= p we would

need the sum with m ≤ q elements to surpass it. However, it would not be with

less than q elements because S is a monotone increasing function (by Lemma 3),

and S(qL(q)) = q, and (p− 1)L(p− 1) + 1 > qL(q). Therefore, we need only check

that the sum with q elements is not larger. With q elements we get

qN − q(q − 1)

2
L(q − 1) = qN − q − 1

2
L(q) = qN − q − 1

2p
L(p). (8)

Since N > L(p)(p2−p−q+1)
2pk , the sum in (7) with m = p is larger than (8). Therefore

S(N) = p.

For the second part we have m(N) ≥ q + 1. Take an N in the interval((
p− 1

2

)
L(p− 1),

L(p)(p2 − p− q + 1)

2pk

)
;

then the expression in (8) is greater than the expression in (7) for m = p. That

implies that S(N) ≤ q for those values. But S(qL(q)) = q and S is monotone

increasing, so S(N) = q for the whole interval. Therefore, S(N) 6= M(N) for any

N in the interval (
qL(q) + 1,

L(p)(p2 − p− q + 1)

2pk

)
.

Now we are ready to prove our theorem about densities.

Proof of Theorem 5. For the upper density, let k be a positive integer. For almost

all primes p, the closest prime power to p is a prime q with p − q ≥ k. This is

because the average distance between prime powers less than or equal to x is log x

by the Prime Number Theorem, and most prime powers are primes. Let Bk be the

set of such primes. For these primes p we have that the interval[
max

{(
p− 1

2

)
L(p− 1),

L(p)(p2 − p− q + 1)

2pk

}
, pL(p)

]
is a subset of A(pL(p)) (by Lemma 5). Now,

lim
p→∞

(
p− 1

2

)
L(p− 1)

pL(p)
= lim

p→∞

p− 1
2

p2
= 0, (9)

and

lim
p→∞

L(p)(p2 − p− q + 1)/(2pk)

pL(p)
= lim

p→∞

p2 − p− q + 1

2p2k
=

1

2k
. (10)
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Therefore,

lim
p→∞
p∈Bk

A(pL(p))

pL(p)
≥ 1− 1

2k
.

This shows that δ+ ≥ 1− 1
2k for any fixed integer k. Therefore, δ+ = 1.

For the lower density, let Ck be the set of primes p such that the largest prime

power less than p is a prime q with p−q ≤ k. For p ∈ Ck, by Lemma 5, all elements

N in the interval ((
p− 1

2

)
L(p− 1),

L(p)(p2 − p− q + 1)

2pk

)
(11)

do not satisfy M(N) = S(N). Consider A
(

p
2kL(p)

)
. As p → ∞ the ratio of the

right endpoint of (11) to p
2kL(p) goes to 1. We also have

lim
p→∞

(p− 1
2 )L(p− 1)
p
2kL(p)

= lim
p→∞

2k

p
= 0. (12)

Therefore, if we have infinitely many primes p in Ck, then from (12) we get

lim
p→∞
p∈Ck

A
(

p
2kL(p)

)
p
2kL(p)

= 0.

Therefore, if there is a k, for which Ck is infinite, then δ− = 0. Recent work from

Zhang [8], Maynard [5], and the Polymath group [6] has worked to find the best

k they can. In particular, now we know that there exist infinitely many pairs of

primes p, q such that p − q ≤ 246. The techniques of their proof imply that the

number of primes p ≤ x for which there is a prime q with p−q ≤ 246 is greater than

or equal to C x
log50 x

for a positive constant C. Since the number of prime powers

that are not prime is bounded above by a constant times
√
x, that means there are

infinitely many primes in C246. This implies that

δ− = 0.

Remark 1. The proof that δ− = 0 does not require the impressive work on prime

gaps of Zhang and others. One could prove it using the Prime Number Theorem.

However, one has to be more careful describing what is the infinite set on which the

limit goes to 0, because we would not be able fix an integer k to form Ck.
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