Math 311: Introduction to Real Analysis Bonus Homework

Enrique Treviño

Problem 1. (Exercise **4.2.1**) Prove that if $a_n > 0$ and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} a_n^3$ converges.

Problem 2. (Exercises 4.2.2 and 4.2.3) Consider the series

$$1 + \frac{1}{2\sqrt[3]{2}} + \frac{1}{2\sqrt[3]{2}} - \frac{1}{\sqrt[3]{2}} + \frac{1}{3\sqrt[3]{3}} + \frac{1}{3\sqrt[3]{3}} + \frac{1}{3\sqrt[3]{3}} - \frac{1}{\sqrt[3]{3}} + \cdots + \underbrace{\frac{1}{n\sqrt[3]{n}} + \frac{1}{n\sqrt[3]{n}} + \cdots + \frac{1}{n\sqrt[3]{n}} - \frac{1}{\sqrt[3]{n}} + \cdots}_{n \text{ times}} - \underbrace{\frac{1}{\sqrt[3]{n}} + \cdots + \frac{1}{\sqrt[3]{n}} + \cdots}_{n \text{ times}}$$

- (a) Show that the series converges.
- (b) Show that if b_k is the kth summand of the series, then $\sum_{i=1}^{\infty} b_i^3$ diverges.
- (c) Why doesn't this contradict Problem 1?

Problem 3. (Exercise **3.4.29**) Suppose that f is continuous on $[a, \infty)$ and $\lim_{x\to\infty} f(x)$ is finite. Show that f is bounded on $[a, \infty)$.

Problem 4. In class, the following theorem (Theorem 3.13: L'Hospital's Rule ∞/∞) was proved: If f and F are both differentiable at every point except x = a in an open interval that contains a, if

$$\lim_{x \to a} |F(x)| = \infty,$$

if $F'(x) \neq 0$ for all x in this open interval, and if $\lim_{x\to a} f'(x)/F'(x)$ exists and is finite, then

$$\lim_{x \to a} \frac{f(x)}{F(x)} = \lim_{x \to a} \frac{f'(x)}{F'(x)}.$$
 (1)

Suppose that $\lim_{x\to a} f'(x)/F'(x) = \infty$. Show (1) is also true under this condition.

Problem 5. (Exercise 4.2.13) Consider the following two series:

$$\frac{1}{3} + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{2^4} + \frac{1}{3^5} + \frac{1}{2^6} + \dots + \left(\frac{5 - (-1)^n}{2}\right)^{-n} + \dots$$
 (2)

$$\frac{1}{2} + 2^2 + \frac{1}{2^3} + 2^4 + \frac{1}{2^5} + 2^6 + \dots + 2^{(-1)^n n} + \dots$$
 (3)

- (a) Use the ratio test to determine whether (2) is convergent. Note that the test could be inconclusive.
- (b) Use the root test to determine whether (2) is convergent. Note that the test could be inconclusive.
- (c) Use the ratio test to determine whether (3) is convergent. Note that the test could be inconclusive.
- (d) Use the root test to determine whether (3) is convergent. Note that the test could be inconclusive.

Problem 6. (Exercises **4.2.8** and **4.2.9**) Given a series $a_1 + a_2 + a_3 + \cdots$, assume that we can find a bound α and a subscript N such that $n \geq N$ implies that

$$\left| \frac{a_{n+1}}{a_n} \right| \le \alpha.$$

(a) Prove that given any $\epsilon > 0$, there is a subscript M such that $n \geq M$ implies that

$$\sqrt[n]{|a_n|} < \alpha + \epsilon.$$

- (b) Show that this does not necessarily imply that $\sqrt[n]{|a_n|} \leq \alpha$ for some n large enough.
- (c) Prove that if the ratio test tells us that our series converges absolutely, then the root test will also tell us that our series converges absolutely.

Problem 7. (Exercises **4.2.10**, **4.2.11**, and **4.2.12**) Given a series $a_1 + a_2 + a_3 + \cdots$, assume that we can find a bound β and a subscript N such that $n \geq N$ implies that

$$\left| \frac{a_{n+1}}{a_n} \right| \ge \beta.$$

(a) Prove that for any $\epsilon > 0$, there exists a subscript M such that for $n \geq M$ we have

$$\sqrt[n]{|a_n|} > \beta - \epsilon.$$

(b) Prove that if $\lim_{n\to\infty} |a_{n+1}/a_n|$ exists, then

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|.$$

- (c) Find an infinite series of positive summands for which the root test shows it diverges, but the ratio test is inconclusive.
- (d) Explain why the example from part (c) does not contradict part (b).

Problem 8. Suppose $a_1 + a_2 + a_3 + \cdots$ converges conditionally. Prove

- (a) The sum of the positive terms of a_i diverges to infinity.
- (b) The sum of the negative terms of a_i diverges to negative infinity.
- (c) You can rearrange the terms in the terms of $a_1 + a_2 + \cdots$ so that the series converges to 1.
- (d) Let x be any real number. Show you can rearrange the terms of $a_1 + a_2 + \cdots$ to converge to x.