Homework 6
Math 311: Introduction to Real Analysis

October 31, 2017

Problem 1. (Exercise 3.5.3) For > —1,x # 0, show that
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Problem 2. (Exercise 3.5.17) Let f and g be functions with continuous second derivatives on [0, 1] such
that ¢'(x) # 0 for x € (0,1) and f'(0)g”(0) — f”(0)g’(0) # 0. Define a function 6 for x € (0,1) so that 6(x)
is one of the values that satisfies the generalized mean value theorem,

Show that

lim —= = —.
z—0t T 2

Problem 3. (Exercise 3.5.19) Suppose f is differentiable on [a,b]. Define g in terms of f as follows:
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Prove g is continuous.
Problem 4. (Exercise 4.1.1) Consider the series
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(a) How many terms for we need to take to be within € = .0001 of the target value 27
(b) How many terms for we need to take to be within e = 107000000 of the target value 27
Problem 5. (Exercise 4.1.4) Consider the series
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(a) Evaluate the partial sums for the multiples of 10 up to n = 400.

(b) Describe and discuss what you see happening.



Problem 6. (Exercise 4.1.13) Calculate the partial sums
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up to at least n = 2000.
(a) Describe what you see happening.
(b) Make a guess of the approximate value to which this series is converging.
(c¢) Explain the rationale behind your guess.

Problem 7. (Exercise 4.1.16) Let
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where k£ = 0,1, 2,.... Determine whether the series
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converges absolutely, converges conditionally, or diverges.

Problem 8. (Exercise 4.2.4 (a,b,c,d)) For each of the following series, determine whether it converges
absolutely, converges conditionally, or diverges.
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