TEACHING STRATEGIES CENTERED ON STUDENTS AS SCHOLARS WHO LEARN BY INQUIRY
Given the national expectations to reform undergraduate science curricula in ways that emphasize scientific process, I am very interested in the effective marriage of process and content in undergraduate science teaching and in the effective mixing of sage-on-stage and guide-by-side approaches. I am particularly interested in how effectively to combine experiential learning innovations with investigative laboratories and traditional lecture/discussion instruction. These teaching interests have translated into specific initiatives that have been supported by an NSF grant (2003-2007), NSF MRI grant 2001-2004, and indirectly by student training opportunities funded by an NIH-AREA grant 2004-2010. These innovations are designed to strengthen:
- Inquiry-based learning in courses
- Use of contemporary instrumentation that integrate teaching and research
- A community centered on students as scholars
I. INFUSING INQUIRY INTO COURSES
A. Cell Biology: I published an article in Cell Biology Education (2002) that describes experiential projects for an introductory-level science course, which effectively promote both content and process. In addition to citations in pedagogy papers, it has also been mentioned in "adapt and implement" grant proposals and has led to presentations at national conferences.
Abstract:
Facilitating not only the mastery of sophisticated subject matter, but also the development of process skills is an ongoing challenge in teaching any introductory undergraduate course. To accomplish this goal in a sophomore-level introductory cell biology course, I require students to work in groups and complete several mock experiential research projects that imitate the professional activities of the scientific community. I designed these projects as a way to promote process skill development within content-rich pedagogy and to connect text-based and laboratory-based learning with the world of contemporary research. First, students become familiar with one primary article from a leading peer-reviewed journal, which they discuss by means of PowerPoint-based journal clubs and journalism reports highlighting public relevance. Second, relying mostly on primary articles, they investigate the molecular basis of a disease, compose reviews for an in-house journal, and present seminars in a public symposium. Last, students author primary articles detailing investigative experiments conducted in the lab. This curriculum has been successful in both quarter-based and semester-based institutions. Student attitudes toward their learning were assessed quantitatively with course surveys. Students consistently reported that these projects significantly lowered barriers to primary literature, improved research-associated skills, strengthened traditional pedagogy, and helped accomplish course objectives. Such approaches are widely suited for instructors seeking to integrate process with content in their courses.
Citation & PDF:
DebBurman, SK. (2002). Learning How Scientists Work: Experiential research projects to promote cell biology learning and scientific process skills. Cell Biology Education 1, 154-172.
B. Neuroscience: An undergraduate elective course in molecular neuroscience features a student role-playing workshop called Neurofrontiers, initially inspired by a Cold Spring Harbor Labs course I attended on "molecular mechanisms of neurological diseases" in 1997. This workshop has since been organized nine times in two institutions and has featured the scholarship of over 80 students, more than half of whom have eventually pursued MDs, PhDs and other graduate degrees, with many trained in neurology and neuroscience. I have presented this teaching innovation at many national meetings like ASCB, ASBMB, and SFN between 2001-2006 and I am currently writing a manuscript for a 2007-2008 publication.
Working abstract:
DebBurman S.K. Acting Out As Neuroscientists: Research Projects that Promote Undergraduate Neuroscience Learning & Process Skill Development. Undergraduate educators nationwide face serious challenges in preparing diverse graduates for a scientifically sophisticated community. The Biology Department at Lake Forest College meets these challenges with inquiry-based pedagogy that supports a diverse student-centered learning community. I have developed transferable experiential projects in several courses to promote mastery of scientific process and content, and to connect text- and lab-based learning with contemporary biomedical research. In this junior-level molecular neuroscience course, undergraduates complete three sequential projects that imitate a neuroscientist's activities. First, they role-play graduate students and present a PowerPoint journal club synthesizing several primary articles. Second, students role-play neuroscientists who seek funding. By reading primary papers on a neurobiology problem, they identify knowledge gaps, design hypothesis-driven experiments, write, and defend a NSF-styled proposal. Lastly, students learn how neuroscience investigations over a career advance knowledge. They role-play leading neuroscientists at a mock conference, authoring reviews published in an in-house journal and presenting seminars alongside true-to-life neuroscientists. Critical to mastering projects is peer review and peer teaching support. Students report by survey that projects strengthen process skills as well as neurobiology content. For beginning and intermediate courses with similar inquiry-driven goals, related sets of projects of sequential complexity were successfully developed. This approach is widely suited to instructors seeking to integrate process with content in diverse courses.
C. Advanced Cell Biology: An undergraduate elective course in advanced cell biology was designed to provide students opportunities to conduct and publish original research in molecular biology. This course was inspired by the Cold Spring Harbor Labs course I attended on "Yeast Genetics" in 2000. I have presented this teaching innovation at many national meetings like ASCB and ASBMB between 2004-2006 and I am currently writing a manuscript for a 2007-2008 publication.
Working abstract:
DebBurman S.K. Design of a Cell Biology Course Wherein Undergraduates Propose, Conduct, and Publish Original Research. Undergraduate educators face significant challenges in preparing diverse graduates for a scientifically sophisticated and interdisciplinary 21st century community. Science curricula that integrate training in research with undergraduate teaching have enjoyed much funding support. The goal of providing comprehensive original research experiences within a course is a particular challenge, but was achieved in an NSF-supported advanced cell biology course described here. Students conducted individualized projects integrated to the original discovery of 86 yeast genes, which enhanced the human gene alpha-synuclein's toxicity (Willingham et al. Science 302, 1769-72, 2003). Not knowing the cellular mechanism of how these genes enhanced toxicity provided impetus for student-driven discovery. To begin with, each student picked a "my favorite gene" (MFG). Students then organized and led in-depth discussions (or lectures) to familiar each other with MFG background. Next, they uncovered current gaps in knowledge by presenting journal clubs on articles that bridged MFG with alpha-synuclein. In their quest for new knowledge, students wrote grant proposals to conduct original research based on the technologies and approaches available to them at the home institution, and they spent the first six labs mastering them. They spent rest of the semester conducting, troubleshooting, repeating experiments, and interpreting data. Instead of a traditional final exam, each wrote a primary article that was 1) published in an in-house student research journal (EUKARYON; this journal discussed as a separate poster at this meeting); and 2) submitted for publication review to national undergraduate research journals; and/or 3) presented at local or national scientific conferences. Such courses, while necessarily small and self-selective, provide successful authentic research experiences that prepare undergraduates for professional scientific careers.
II. INCORPORATING INSTRUMENTATION INTO INQUIRY
A. NSF-MRI Grant 2001-2004, $94,000
Co-PI: DebBurman S.K.
Acquisition of Multi-Imaging System For Use in an Undergraduate Institution
The Lake Forest College Department of Biology is proposing to acquire a multi- imaging system as shared research instrumentation. Our department and the college are committed to an educational mission that stresses integration of research and teaching and provides an environment in which students can engage in original, publishable research. This kind of environment in small colleges has been shown to contribute disproportionately to the pool of future research scientists. Lake Forest College has a strong track record in collaborative faculty-student research and will benefit substantially from the availability of a state-of-the-art multi-imaging system. Ultimately, the enhancement of the research and training capabilities of the biology department would help to attract larger numbers of talented students interested in research and research careers. In particular, the biology program attracts a high fraction of women and significant numbers of minority students and the college is strongly committed to recruitment of underrepresented groups. Improved research facilities would help to sustain and expand this strength. Faculty research involving students includes investigations of the role of telomeres in the cell cycle of Tetrahymena (Kirk, PI), gene expression and neural development in chick (Darnell, co-PI), the effects of protein-remodeling factors on human disease-associated proteins in yeast (DebBurman, co-PI, will join department in August 2001), and the evolution of sexual behavior and color polymorphism in guppies (Houde, co-PI). Students majoring in biology at Lake Forest College receive training in modern research methods through these research programs and through their course work. The undergraduate biology curriculum emphasizes student-designed investigation using current technology. Research and teaching facilities currently provide training in techniques such as nucleic acid extraction, agarose and acrylamide gel electrophoresis of nucleic acids and proteins, DNA sequence analysis, PCR, colony library screening, and Southern, Northern, and Western blotting. All gel and blot documentation is currently performed manually using polaroid or hand developed autoradiograms, and quantitative analysis of images is extremely limited. Acquisition of a multi-imaging system will allow more rapid processing of gel- based data and hence greater throughput in laboratory procedures and will extend quantification capabilities to allow us to employ new experimental approaches.
B. NSF-CCLI Grant 2003-2007, $141,878
PI: DebBurman SK
Integration Of Microscopy And Biochemistry Technologies To Enhance Quantitative Experimental Cell Biology Within An Inquiry-Based Curriculum
Undergraduate educators face important challenges in preparing diverse graduates for a technologically sophisticated and scientifically interdisciplinary community. Lake Forest College Biology Department is meeting this challenge with inquiry-based pedagogy that supports a diverse student-centered learning community. We expect students to develop scientific process and master content by progressing through increasingly sophisticated hypothesis-driven investigations that require collaborative research, critical thinking, and diverse forms of communication. Currently, both courses that anchor our cellular curriculum, introductory Cell Biology and advanced Molecular Genetics, feature DNA- based investigations. Other cellular-level technologies feature prominently in biomedical discoveries. Intellectual Merit: We are creating a more comprehensive cellular curriculum by redressing existing deficiencies in cell culture, microscopy and protein biochemistry. We are adding investigative, less ìcookbookî experiments in these areas by restructuring introductory Cell Biology and adding two more advanced courses. Inquiry-conducive experiments successful elsewhere that require quantitative microscopy of cells and tissues and biochemical analysis of proteins are being adapted and implemented. To implement these changes, we request instrumentation for cell culturing, histology, microscopy, and biochemical analysis. The introductory course will incorporate investigations in cell culturing and protein characterization. Advanced course students will expand investigative independence and technical repertoire by developing hypotheses based on current literature and conducting investigations featuring cell culturing, histology, fluorescent microscopy, and protein biochemistry. These additions will also support other courses and help establish interdisciplinary biochemistry and neuroscience majors. Broader Impact: We will graduate diverse individuals thoroughly trained to succeed in a variety of scientific careers, provide innovative K-12 outreach, and nationally disseminate innovations.
C. Lake Forest College Learning & Teaching Center Pedagogical Innovation Grant, 2005, $4000
PI: DebBurman, SK
Development Of A Biological Imaging & Biochemical Analysis Teaching & Research Center To Incorporate Contemporary Cell & Molecular Technologies & Faculty Research Into Biology Curriculum
Funded Abstract:
In support of several proposed innovations, National Science Foundation has awarded me a 2003-2007 Course, Curriculum, and Laboratory Improvement (NSF-CCLI) instrumentation grant for a to buy new equipment to incorporate contemporary investigative laboratories in cell culturing, histology, microscopy, and biochemical analysis (see above). However, this particular NSF-CCLI grant does not provide funds for physical renovation of space or faculty compensation towards innovation development. Therefore, for full realization of proposed innovations, I request LTC pedagogical innovation grant support for Development of Physical Space that will serve as an integrated Biological Imaging and Biochemical Analysis Teaching and Research Center in the Johnson Science Building; Funds that support this proposed Center and invested faculty time will facilitate use of research technology in the LFC science classroom through four courses that impact 50-65 science majors and non-majors each year. This pedagogical innovation also significantly integrates faculty research into classroom activities. Other Biology colleagues look forward to using this Center and equipment towards pedagogical innovations in their courses. LFC strengthens its resources and abilities to graduate diverse individuals well trained to succeed in a variety of scientific and non-scientific careers, and support student interests in two interdisciplinary research-rich sciences: Biochemistry and Neuroscience. As is my practice, successful well-tried and tested innovations are nationally disseminated via platform presentations at national conferences and peer-reviewed publications.
III. A JOURNAL TO PROMOTE A COMMUNITY OF STUDENTS AS SCHOLARS
Initially proposed within the NSF-CCLI grant described above, and inspired by the high level of student scholarship within the biology classrooms at Lake Forest, I helped Lake Forest students create, publish and govern an undergraduate journal in the life sciences called Eukaryon in 2004. In four short years, the journal has become an extremely successful scholarly activity for our science majors. It has also become an integral component to the curriculum of the biology department and source of student, dept, and institutional pride. I have presented posters and talks on Eukaryon at national and local meetings since 2005 and I am presently planning a manuscript for publication.
The use of an undergraduate scholarship journal to strengthen undergraduate inquiry-based pedagogy and a community of student scholars
Current Abstract:
Undergraduate research and inquiry-based pedagogy are becoming an increasingly crucial components in colleges and university curricula in the United States. Providing undergraduates the opportunity to publish their scholarship serves as a pedagogical tool to increase scientific literacy and motivation for scientific careers. Accordingly, in 2004, the Lake Forest College Biology Department developed a peer-reviewed undergraduate research journal of life science scholarship, Eukaryon. In each annual issue, Eukaryon publishes scholarship in any sub-discipline of the life sciences that students have produced within the department's research-rich undergraduate classrooms and labs, in a variety of scientific and journalistic formats. Here, we detail three aspects of the journal's development: 1) how it is governed, published, and financed exclusively by an undergraduate editorial board; 2) how the journal establishes and improves on its content and format; and 3) specific strategies that maintain publication selectivity and integrates the journal with student course work and faculty-student collaborative scholarship. Finally, we evaluate the journal's initial impact on a department's curriculum and its community of student scholars, and discuss future improvement plans. Given the initial success of Eukaryon, we encourage the adaptation and implementation of such journals at undergraduate institutions that focus on students as scholars and on inquiry-based pedagogy.
Journal website: http://www.lakeforest.edu/eukaryon
|